

February 26th, 2013

Transferring Engineered Properties between Antibody Formats and Expression Systems

Jonas V. Schaefer, PhD Department of Biochemistry, University of Zurich

Antibody therapeutics vs. engineering

while most antibodies on the market/in R&D are full-length IgGs, most of the antibody engineering is performed using small fragments

Full-length IgG engineering

Why not just one "perfect" framework?

seven V_H germline families with different biophysical properties

variability in subfamilies increasesbinding diversity

Engineering of unstable V_H6 domain

comparison of the human consensus V_H domains (germinal)

improved biophysical properties of scFv fragments expressed in E. coli:

- increased stability: $\Delta\Delta G_{N-IJ} = 20.9 \text{ kJ/mol}$
- 4-fold increase in expression levels

Are previous findings transferable?

- Are the effects of the mutations "dampened" in a larger assembly?
- Does the eukaryotic **secretory quality control** overcome folding issues?

Model antibodies

	lgG 6B3	lgG 2C2	
heavy chain (HC)	V _H 6	V _H 6	
antigen	protein	peptide	
light chain (LC)	V_{λ} 3 (lambda)	V _K 3 (kappa)	

- chosen model IgGs differ in
 - Fab stability: rather unstable (6B3) vs. extremely stable (2C2)
 - <u>pl</u>: 6.9 (6B3) vs. 8.7 (2C2)
 - <u>antigen</u>: protein vs. peptide

Eukaryotic expression systems

Mammalian cell culture (HEK)

stable HEK293 (Flp-In)
CMV promoters (constitutive)

Yeast Pichia pastoris (PP)

stable SMD1163
GAP promoters (constitutive)

- stable clones differ only in **point mutations** (same genetic locus)
- **constitutive expression** eliminates complications of induction strategy
 - expression level directly attributable to protein variant

Difference in aggregation susceptibility

- ➡ Pichia-derived glycans reduce aggregation tendency
- **EAEA-peptide** (originating from yeast signal sequence) decreases aggregation susceptibility of HEK-IgG upon N-terminal addition

Comparison of expression levels

eukaryotic **chaperons** and **quality control** systems equalize the expression yield between WT and stabilized V_H6

prokaryotic expression of IgGs indicates increased periplasmatic levels of the M variants

Stabilizing effects of V_H6 mutations

<u>ITF</u>

GdnHCl-unfolding

Stability overview

			ITF	GdnHCl	DSF	DSC
lgG 2C2	WT		70.4°C*	2.5 M	n.d.	86.0°C
	M		71.8°C*	3.8 M	n.d.	87.8°C
		Δ =	1.4°C	1.3 M	-	1.8°C
lgG 6B3	WT		67.6°C	2.0 M	74.5°C	72.1°C
	M		70.8°C	2.6 M	77.0°C	74.3°C
		Δ =	3.2°C	0.6 M	2.5°C	2.2°C
Fab 6B3	WT		69.7°C	2.0 M	76.5°C	72.6°C
	M		74.2°C	2.6 M	80.0°C	76.6°C
		Δ =	4.5°C	0.6 M	3.5°C	4.0°C

^{* -} determined in the presence of 1 M GdnHCl

Electrophoretic analyses of IgGs

- non-reducing SDS-PAGE reveals inhomogeneity of WT, but not of M variants
- banding pattern is not caused by:
 - glycosylation
 - proteolysis
 - charge heterogeneity

Disulfide bond scrambling in IgG2

Disulfide shuffling as source of multiple bands?

2D-electrophoresis

Analysis of IgG variants on "non-conventional" 2D-SDS-PAGE

HEK IgG 2C2 WT

- distinct bands of 1st dimension resolve again in the 2nd dimension
- multiple bands are **not caused by disulfide heterogeneity / shuffling** (confirmed by MS analyses and determination of unpaired cysteines)

Stability probed by dye binding

Analysis by capillary electrophoresis (performed in microfluid chip)

M variant seems more densely packed (less SDS-micelles can bind)

Stability probed by partial reduction

Partial reduction of IgG by hydrophilic TCEP

- TCEP treatment reduces **inter-molecular disulfide bond** only in WT IgGs
- labeling of free Cys with fluorescent 5-IAF confirms improved structural integrity / compactness

Conclusions

mutations affect structural integrity and homogeneity

Conclusions

- variable domain mutations: effects on expression level
 - strong influence in E. coli
 - moderate influence in *Pichia pastoris*
 - no influence in HEK293
- mutations influence the biophysical properties of the IgG: thermal and denaturant-induced unfolding
- increased stability independent of the expression system used
- transferability of improvements implemented in smaller fragments onto full-length IgG

Acknowledgements

Department of Biochemistry, UZH

Andreas Plückthun Annemarie Honegger all present and former lab members

Industrial partners

Peter Gimeson (GE Healthcare) Daniel Weinfurtner (MorphoSys) Thomas Müller-Späth (ChromaCon) Stefan Duhr (NanoTemper)

financial support

