Multivalent Antibody Fragments with High Functional Affinity for a Tumor-Associated Carbohydrate Antigen

Michael Rhein necker, Christina Hardt, Leodevico L. Ilag, Peter Kufer, Rudolf Gruber, Adolf Hoess, Andrei Lupas, Christine Rottenberger, Andreas Plückthun, and Peter Pack

We report in this work a human-derived self-assembling polypeptide based on the tetramerization domain of the human transcription factor p53, which can be fused to single-chain Fv Ab (scFv) fragments via a long and flexible hinge sequence of the tumor-associated carbohydrate Ag Lewis Y showed the expected m.w. of a dimer and tetramer, respectively. Analysis of Lewis Y-binding behavior by surface plasmon constant domains to bi- or multivalent Abs, with rotational and regtons.

The specific interaction and structural relationship between one Ab binding site and its complementary antigenic determinant are described thermodynamically by the intrinsic affinity. This is the affinity displayed by a monovalent fragment, and with a multivalent fragment it can be measured only with soluble Ags or on surfaces with very low Ag density. In many cases, however, the binding strength between Ab and surface-bound Ag is of direct interest, and it can be enhanced considerably by the formation of multiple binding interactions within one Ab-Ag complex. The term functional affinity was introduced by Karush in 1970 to distinguish between the specific monovalent interaction (the intrinsic affinity) and the enhancement of binding strength by multivalency (1-3). Frequently, the somewhat ill-defined term avidity is used to mean functional affinity.

The enhancement factor between intrinsic and functional affinity is dependent on the intrinsic affinity per binding site, the flexibility and number of the associated binding sites, and the number as well as distance between Ags within reach. Once an Ig has docked to the surface via a single site, the binding of additional binding sites is favored because of their high effective concentrations. As a rough estimate, the functional affinity is the product of intrinsic affinities and local concentrations (4). In case of an anti-DNP IgM, the measured enhancement factor between monovalent and multivalent binding appears in the range of 10^6 to 10^{12} (3).

The multivalency effect, however, is not restricted to Igs. For example, the trimeric hepatic lectin (5) binds the trimeric ligand with a 100- to 1000-fold higher functional affinity than the monovalent ligand (6). The functional affinity of the dimeric Helix Pomata A hemagglutinin to its ligand on human erythrocytes is 10^4-fold higher than the intrinsic affinity of monomeric hemagglutinin, and that of the hexameric structure even 10^5-fold higher (7).

Antibodies against carbohydrates frequently belong to the decavalent IgM class, since carbohydrate Ags are T cell-independent Ags that are usually unable to induce class switching and the ensuing somatic mutations. Given the low intrinsic affinity of most Abs for carbohydrates (8), it is not surprising that, when class switching does occur, most of the murine anti-carbohydrate Abs are switched to the IgG3 class (9) that is known to multimerize via the FeR upon binding to the Ag (10). Similarly, carbohydrate binding by lectins such as conglutinin or IgE-binding protein requires multivalency (11, 12).

A large proportion of relevant tumor-associated Ags are either glycolipids or glycoproteins, in which the carbohydrate epitope plays a predominant role in the Ab-Ag recognition process (13, 14). Unfortunately, carbohydrate-protein interactions are usually of low affinity (8, 15). To date, improvement of carbohydrate binding by protein engineering techniques such as rational design (16) or random mutagenesis (17) leads to only modest improvements and remains challenging.

In this work, we report a novel self-assembling polypeptide of human origin, which allows the facile conversion of a single Ag binding site with low intrinsic binding affinity into a tetrameric construct with high functional affinity. For an experimental model...
system, the scFv4 derived from the IgM MSL5 was chosen. This Ab binds with low intrinsic affinity to the tumor-associated carbohydrate Ag LeY (Galβ1→2Galβ1→3GalNAcβ1→3R), which is expressed on a variety of human carcinomas (18, 19) and can be detected on only a few normal tissues, such as gut, at low levels. LeY has also been detected on minimal residual metastatic tumor cells by bone marrow immunochemistry (20), and represents a potential target for Ab-based cancer therapy. Using fusions with self-associating polypeptides both of human origin and artificial design, multimeric scFv fusion proteins were produced in Escherichia coli, and their binding behavior was compared by ELISA and analysis of surface plasmon resonance.

Materials and Methods
Reagents and cell lines

The murine H18A, a mAb of the IgG3 type, was used as positive control in the LeY-binding studies, and was obtained from Sekagaku Corp. (Medac GmbH, Germany). Immunoblot analysis and ELISA assays were performed using the anti-FLAG Ab M1 (Kodak, New Haven, CT) and anti-mouse IgM- or IgG-specific alkaline phosphatase conjugates (Sigma Chemical Co., St. Louis, MO). Human LeY was purified from murine IgM-placental resin for the immobilized metal affinity chromatography, essentially as described previously for scFv proteins (22, 24). E. coli JM3 cells were transformed with each MSL5 construct. Cultures of 4 L were grown in LB medium (Life Technologies, Paisley, UK) with 1 M tor­bitol and 10 mM betaine at 37°C until OD600 of 0.4. The lac promoter/operator system was induced with 1 mM of isopropyl β-D-thiogalactopyranoside (IPTG), and the cells continued growth at room temperature for 4 h in case of scFv, and 16 h for both mini-antibody constructs. Whole cell extract was prepared by passing the cell paste twice through a French pressure cell press (SLM Amicon, Urbana, IL). Each MSL5 construct was then purified via IMAC on nickel-nitrilotriacetic acid resin (Qiaagen) using a Biologics HPLC system (Bio-Rad, Hercules, CA). Each purified protein was dialyzed and concentrated in HBS buffer (10 mM HEPES, pH 7.5, 150 mM NaCl, 0.3 mM EDTA). The protein concentration was determined using the molecular extinction coefficients (32) (Table 1: MSL5-scFv, 56,950 M–1 cm–1; dimeric mini-antibody MSL5-dHLXhis, 113,900 M–1 cm–1; and tetrameric mini-antibody MSL5-p53his, 232,920 M–1 cm–1).

Size exclusion chromatography

A Superose 12 column (Pharmacia) was equilibrated in HBS buffer with a flow rate of 0.5 ml/min. The column was calibrated with standard proteins (cytochrome c, 12.4 kDa; carbonic anhydrase, 29 kDa; albumin, 66 kDa; alcohol dehydrogenase, 150 kDa; and BSA, 66 kDa) and BSA, 66 kDa). The purified MSL5 constructs were analyzed separately at similar concentrations (MSL5-scFv, 7.5 μM; MSL5-dHLXhis, 2.4 μM; and MSL5-p53his, 107 μM).

Functional ELISA assays

Microtiter plates (Nunc, Maxisorp, Wiesbaden, Germany) were coated with 10 μg/ml of either LeY-BSA or LeX-BSA in HBS buffer (50 μl of each solution/well) for 16 h at 4°C. The plates were blocked with PTB and 2% skimmed milk powder for 2 h at room temperature, and washed three times with PBST (PBS buffer, 0.05% Tween). Anti-LeY Ab was incubated on the plate for 90 min at room temperature. For the detection of MSL5 IgM and H18A IgG3, respectively, anti-IgM and anti-IgG alkaline phosphatase conjugates were diluted 1:5000 in PTB, aliquoted (50 μl/well), and incubated for 30 min at room temperature. After three additional washes with PBST, 50 μl of the alkaline phosphatase substrate (4-nitrophenylphosphate) was added to each well, and the OD405 was determined using a Dynatech Labs (Chantilly, VA) microtiter plate reader. For detection of recombinant MSL5 proteins via the N-terminal FLAG FLUOROMAT (23), 50 μl of anti-FLAG-reactive mAb M1 (diluted 1/1000 in PTB) was added to each well and incubated for 45 min at room temperature, followed by three additional washing steps with PBST. The anti-IgG alkaline phosphatase conjugate step and the subsequent development of the assay were performed as described above.

Surface plasmon resonance studies

All measurements were conducted in HBS buffer (Pharmacia) with a flow rate of 5 μl/min at 25°C using one sensor cell of a biosensor machine (BIAcore, Pharmacia). LeY-BSA was immobilized covalently on the dextran matrix of a CM5 sensor chip using the standard amine immobilization procedure (33). Following activation of the chip surface with 50 mM N-hydroxysuccinimide and 0.4 M N-(dimethylaminoethyl)-N-ethylcarbo­bismide, a LeY-BSA stock solution (155 μg/ml) in PBS was diluted with an equal volume of sodium acetate (1 M, pH 3.0) and injected twice to give a high density surface (7000 RU) of immobilized LeY-BSA. For analysis of the MSL5 proteins, 20 μl of each sample was injected at various concentrations (IgM, 0.3–14 nM; scFv, 0.37–3.75 μM; dimeric mini-antibody, 0.12–2.4 μM; and tetrameric mini-antibody, 0.08–1.07 μM). Dissociation was induced by injection of 105 μl buffer (IgM binding was analyzed only after addition of soluble LeY to each protein sample before injection or by supplementing the running buffer with LeY during the dissociation phase. The final LeY concentration was always 1 mM. The influence of buffer and protein concentration on the BIAcore signal (bulk effect) was determined by co-injection of various concentrations between 0.5 to 2.5 μM of scFv binding sites, with an excess of soluble Ag (1 mM) in the sample buffer to inhibit binding. The resulting signals reflect the
heavy chains

<table>
<thead>
<tr>
<th>Chothia numbering</th>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSL5</td>
<td>CQVIGGSEQSLLGGERVVEKVEHLSGGVAYT.</td>
<td></td>
<td>680</td>
</tr>
<tr>
<td>H18A</td>
<td>EMLMVEGSLQGGLKSLGKQGQFVGSFQTPY</td>
<td></td>
<td>680</td>
</tr>
<tr>
<td>BR55-2</td>
<td>EMLMVEGSLQGGLKSLGKQGQFVGSFQTPY</td>
<td></td>
<td>680</td>
</tr>
<tr>
<td>BR96</td>
<td>EMVMEGSLQGGLKSLGKQGQFVGSFQTPY</td>
<td></td>
<td>680</td>
</tr>
<tr>
<td>B3</td>
<td>EMVMEGSLQGGLKSLGKQGQFVGSFQTPY</td>
<td></td>
<td>680</td>
</tr>
</tbody>
</table>

kappa chains

<table>
<thead>
<tr>
<th>Chothia numbering</th>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSL5</td>
<td>DQVQSPDLVLTVQGGLKSLGQSLQGQFVGS3</td>
<td></td>
<td>680</td>
</tr>
<tr>
<td>H16A</td>
<td>EMLMVEQSLQGGLKSLGQGQFVGSFQTPY</td>
<td></td>
<td>680</td>
</tr>
<tr>
<td>BR55-2</td>
<td>EMLMVEQSLQGGLKSLGQGQFVGSFQTPY</td>
<td></td>
<td>680</td>
</tr>
<tr>
<td>BR96</td>
<td>EMVMEQSLQGGLKSLGQGQFVGSFQTPY</td>
<td></td>
<td>680</td>
</tr>
<tr>
<td>B3</td>
<td>EMVMEQSLQGGLKSLGQGQFVGSFQTPY</td>
<td></td>
<td>680</td>
</tr>
</tbody>
</table>

FIGURE 1. Peptide sequence of the variable domains of MSL5 in comparison with anti-LeY Abs BR55-2 (34), BR96 (35), B3 (36), and H18A (37).

Table I. Design and peptide sequence of the MSL5 scFv dimeric and tetrameric mini-antibody constructs

<table>
<thead>
<tr>
<th>Construct</th>
<th>scFv Fragment</th>
<th>Tag/Hinge</th>
<th>Multimerization Domain</th>
<th>Linker Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSL5-scFv</td>
<td>V<sub>H</sub>-[GGI<sub>5</sub>]-V<sub>V</sub></td>
<td>myc-H<sub>6</sub></td>
<td>GELLE LLKHM KELL KG-PRK-GELLE LLKHM KELL KG</td>
<td>H<sub>6</sub>N</td>
</tr>
<tr>
<td>MSL5-dHLXhis</td>
<td>V<sub>H</sub>-[GGI<sub>5</sub>]-V<sub>V</sub></td>
<td>murine IgG3 upper hinge</td>
<td>GPPLDQTVTS</td>
<td>oligomerization domain of human p53 (residues 319-360)</td>
</tr>
<tr>
<td>MSL5-p53his</td>
<td>V<sub>H</sub>-[GGI<sub>5</sub>]-V<sub>V</sub></td>
<td>human IgG3 upper hinge</td>
<td>KLPLDGEYPTVLQGRFERFEMRSLGAEK</td>
<td>GSNGAAP-H<sub>6</sub></td>
</tr>
</tbody>
</table>

Molecular design of mini-antibodies

We have expanded the range of self-assembling polypeptide domains (25, 39, 40) by designing a novel association domain incorporating the tetramerization domain of human transcription factor p53. Human p53 consists of four domains (N-terminal transactivation domain, DNA-binding domain, tetramerization domain, C-terminal basic domain). Residues 319-360 of p53 comprise the third domain, which is capable of self associating to a tetramer (27-29).

Oligomerization alone, however, does not automatically result in a dramatic increase in functional affinity of the self-assembled complex, since the oligomer must be geometrically able to bind to several Ags on a solid surface or cell simultaneously. The spatial separation of the p53-derived tetramerization domain from the binding sites by the use of a long and flexible human IgG3 upper hinge provides for independent folding of the fused domains and, even more importantly, for a long reach to bind to distant Ags simultaneously (25, 39, 40).

The product of the assembly PCR of MSL5 encodes an scFv fragment in a V_L-(Gly₄Ser)₃-V_H arrangement with an N-terminal EcoRV and a C-terminal EcoRI restriction site. Recursive PCR was used to synthesize an EcoRI-HindIII gene cassette encoding the N-terminal human IgG3 upper hinge (26), residues 319–360 of human p53 (27–29) as the tetramerization domain, and a short GSNGAAP linker incorporating an Ascl restriction site, followed by a C-terminal His₆ tail (Table I). A schematic representation of the tetrameric mini-antibody expression plasmid pMSL5-p53his and the expression cassette of the MSL5-p53his is shown in Figure 2, A and B, respectively. For comparison, we also constructed the corresponding dimeric mini-antibody MSL5-dHLXhis and the MSL5-scFv. The design of the dHLX gene cassette (25), which codes for a small dimerization domain (6 kDa) based on an artificial helix-turn-helix motif (41), was extended by a C-terminal His
FIGURE 2. E. coli expression system. A. Schematic overview of the pMSL5-p53his vector constructed for functional expression of the MSL5 tetrameric mini-antibody in E. coli. The high copy number phagemid contains the following elements in a clockwise arrangement (22): lac gene encoding the lac repressor, MSL5-p53his cistron under a lac promoter/operator (lac P/O) followed by an lpp terminator (term lpp), the intergenic region of the f1 phage allowing for production of scDNA (f1), and bla gene encoding β-lactamase for ampicillin resistance and the ColE1 origin of replication (ori). B. Drawing to scale of the modular MSL5-p53his cistron under the lac promoter (lac P, denoted by an arrow) and lac operator (lac O, drawn as a box). The lac P/O is followed by a shortened lacZ gene encoding an MTMITF peptide ending in a stop codon with an XbaI restriction site, the ompA signal peptide (S) for secretion of the fusion protein into the bacterial periplasm, a FLAG epitope (DYKDI) with an EcoRV restriction site for detection, the MSL5 scFv fragment with a (G–S)4 linker (L) between V1 and V2 domain, an EcoRI and HindIII site for insertion of the human IgG3 hinge cassette (between EcoRI and MroB), and the cassette encoding the human p53 tetramerization domain (between MroB and Ascl), followed by the His-tail cassette (H4, between Ascl, two stop codons, and HindIII) in front of the lpp terminator.

FIGURE 3. Size exclusion chromatography of the MSL5 Ab constructs (○) (MSL5-scFv, 7.5 μM; MSL5-dILXhis, 2.4 μM; MSL5-p53his, 1.07 μM). The column (Superose 12; Pharmacia) was calibrated with standard proteins in HBS (○) (cytochrome c, 12.4 kDa; carbonic anhydrase, 29 kDa; albumin, 66 kDa; alcohol dehydrogenase, 150 kDa; β-amylase, 200 kDa).

tail to allow for purification of the mini-antibody via IMAC (Table 1).

Protein expression and purification

The murine MSL5-IgM was purified from mouse ascites (31) by preparative electrophoresis on a polyvinyl chloride-copolymer matrix and a subsequent gel filtration. The recombinant MSL5 mini-antibody constructs were expressed in E. coli in functional yields similar to those of the scFv fragment alone (about 100 μg/L of E. coli culture). Each recombinant protein could be purified to homogeneity using standard IMAC (24). The oligomerization state of the constructs was analyzed by gel filtration (Fig. 3). The apparent molecular mass of 40 kDa for the scFv is somewhat higher than the theoretical value (31.4 kDa). This may indicate an equilibrium, fast on the time scale of column chromatography, between an scFv monomer and dimer (42, 43). The apparent molecular masses of the MSL5-dILXhis (60 kDa) and MSL5-p53his (130 kDa), however, correspond to the expected values of 66.7 kDa (dimer) and 125.5 kDa (tetramer), respectively. The mini-antibodies showed symmetrical peaks, indicating the formation of stable dimers and tetramers.

Functional ELISA with synthetic Lewis Ags

The functionality and specificity of the MSL5 monoclonal, scFv, dimeric, and tetrameric mini-antibody fusions were analyzed on ELISA plates coated with synthetic LeY-BSA and LeX-BSA conjugates. The binding of the MSL5 IgM to synthetic LeY-BSA was similar to that of the murine anti-LeY monoclonal H18A (Fig. 4A). Both Abs, however, showed differences in their cross-reactivity with synthetic LeX. Even at high concentrations, the MSL5 monoclonal IgM showed no reactivity with LeX, while cross-reactivity of H18A was apparent at concentrations higher than 10 μg/ml. Both Abs exhibited no binding to milk powder, which was used as
the blocking reagent. The scFv gave no detectable signal in the LeY-binding assay, despite its potential monomer-dimer equilibrium. In contrast, binding of both mini-antibody proteins was detectable. The stronger ELISA signal of the tetrameric mini-antibody (Fig. 4B) in comparison with the dimeric mini-antibody would suggest an additional gain in functional affinity for the tetramer over the dimer. As expected, the specificity of both mini-antibodies is similar to that of the parent monoclonal MSL5 in that no cross-reactivity with LeX-BSA was detectable even at high concentrations of 300 μg/ml. The binding of the MSL5 and H18A monoclonals (10-40 μg/ml) and both mini-antibodies (100-300 μg/ml) to the synthetic BSA-LeY tetrasaccharide could be to more than 95% inhibited in each case by addition of 1 mM of soluble LeY methyl ester (data not shown), indicating specificity.

FIGURE 4. A, Functional ELISA of mAbs MSL5 IgM (circles) and H18A IgG3 (squares) with LeY-BSA (white symbols) and LeX-BSA Ag (black symbols). The addition of 1 mM of LeY Ag to either H18A and MSL5 (10-40 μg/ml each) resulted in more than 95% reduction of the binding signal to LeY-BSA in each case. Binding of the Abs to milk powder, which was used as the blocking agent, was not detectable (inhibition and milk-powder data not shown). B, Functional ELISA of the tetrameric anti-LeY mini-antibody MSL5-p53his (circles) and dimeric anti-LeY mini-antibody MSL5-dHLXhis (squares) with LeY-BSA (white symbols) and LeX-BSA Ag (black symbols). The addition of 1 mM of LeY Ag to both mini-antibody constructs (100-330 μg/ml each) resulted in more than 95% reduction of the binding signal to LeY-BSA in each case. Binding of the Abs to milk powder, which was used as the blocking agent, was not detectable (inhibition and milk-powder data not shown). Bound Abs were detected with either IgM, IgG, or FLAG-specific alkaline phosphatase conjugates.

FIGURE 5. Analysis of LeY-BSA-binding behavior of the MSL5-scFv (A), dimeric mini-antibody MSL5-dHLXhis (B), tetrameric mini-antibody MSL5-p53his (C), and MSL5-IgM (D) with surface plasmon resonance on a BIAcore biosensor instrument. Shown are overlay plots of each construct at various concentrations (MSL5-scFv, 0.37-3.75 μM; dimeric mini-antibody MSL5-dHLXhis, 0.12-2.4 μM; tetrameric mini-antibody MSL5-p53his, 0.08-1.07 μM; and IgM, 0.3-14 nM).
The binding of each MSL5 Ig to LeY-BSA was analyzed in real time by surface plasmon resonance (BLAcore) (44). We used experimental conditions of high BSA-LeY Ag density to allow multivalent binding. Even a qualitative analysis of the sensorgrams revealed that the presence of competing LeY. In contrast, comparison of the sensorgrams from the multiple phases, and rapidly reached a steady state of binding, as indicated by the plateau-shaped sensorgrams. This is typical for systems with fast on- and off-rates (BLAcore manual, pp. 8–26 to 8–27). Specific binding of the scFv was apparent, since the signal is larger than the combined bulk refractive indices of buffer and protein in the presence of competing LeY. In contrast, comparison of the sensorgrams from the MSL5 mini-antibody and IgM revealed that both the response rates in the association and dissociation rates decrease as the valency increases.

The decreased on-rate is determined by several factors. First, since the observed rate in the association phase \(k_{o bs} \) is the sum of the on- and off-rates, \(k_{o bs} = k_{diss} + [Ab] \cdot k_{ass} \), the observed rate will appear to become slower even if the true \(k_{ass} \) is identical, simply because of the decrease in \(k_{diss} \) with valency. Second, since the formation of stable bivalent complexes is sterically more demanding, fewer collisions will give rise to them compared with transient monovalent complexes, leading to a decreased \(k_{ass} \).

Third, a differential, unspecific interaction of molecules of different size with the dextran matrix of the sensor surface during association cannot be completely excluded.

The intrinsic dissociation rate of the multivalent Igs, which is the microscopic rate constant with which one binding site leaves the Ag, remains very fast, as seen by the instant inhibition with excess of soluble monomeric Ag (Fig. 6) (45). Nevertheless, the observed off-rate also decreases with increasing valency. This is also rooted in several phenomena. Each dissociating arm has a finite probability of re-binding. Thus, with increasing valency the chance increases that at least one of the remaining arms will find a target before the monovalently bound complex dissociates. Upon complete dissociation, the chance of re-binding to the surface as a dimeric complex also increases with the number of arms. Furthermore, a slow off-rate would of course be expected from trivalent, or even tetradentate, complexes.

The slowdown in the apparent dissociation with increasing valency is most striking in the case of the decavalent IgM that exhibits the slowest off-rate compared with the dimeric mini-antibody and tetrameric mini-antibody. Furthermore, the overlay plot of selected dissociation curves for each protein (Fig. 7) reveals striking differences in the dissociation behavior, ranging from virtually no dissociation from the LeY-BSA conjugate in the case of the IgM (Fig. 5D) to a nearly instantaneous dissociation exhibited by the scFv fragment (Fig. 5A). In contrast, the very fast dissociation is observed for any fragment, even IgM, if re-binding is prevented by the addition of excess of soluble LeY (Fig. 6). This shows that the differences in the dissociation phase cannot be caused by different diffusion coefficients in the dextran matrix.

The time point of half-maximal dissociation \((t_{1/2}) \), as well as differences in the response signals at the end of the association phase (corrected for the bulk effects of buffer change and protein concentration), can serve as semiquantitative criteria of the multivalency effects under the chosen conditions. At concentrations of about 1 \(\mu \text{M} \) binding sites, the specific response (absolute response corrected for the bulk influence of buffer and protein) of the scFv is only 112 RU, whereas the specific signal of the dimeric mini-antibody is eight times higher (889 RU) and that of the tetrameric mini-antibody is about 20 times higher (2120 RU). This is expected, since at 1 \(\mu \text{M} \) the scFv concentration is below the estimated intrinsic dissociation constant of about 10 \(\mu \text{M} \), and can therefore not saturate the binding sites, since a steady state is reached. In contrast, because of the slower off-rate, the other proteins do saturate the binding sites, but the response still differs because of differences in mass.

The multivalent binding properties of the tetrameric mini-antibody \((t_{1/2} = 485 \text{ s}) \) prolong the time span of dissociation by more than two orders of magnitude compared with that of the dimeric mini-antibody \((t_{1/2} = 70 \text{ s}) \) and the scFv \((t_{1/2} < 3 \text{ s}) \). Binding of each multimeric MSL5 Ig to LeY-BSA could be completely and instantaneously inhibited in the presence of soluble Ag, as shown for the immediate dissociation of MSL5-IgM in Figure 6.

5 It is occasionally surmised that in the equation \(k_{o bs} = k_{ass} \cdot [Ab] + k_{diss} \), there should be a minus instead of a plus sign. It becomes obvious, however, that the sum is indeed correct when the equation is derived (44). The increase in \(AbAg \) complex on the surface as a function of time is given by \(d[AbAg]/dt = (k_{ass} \cdot [Ab] \cdot [AbAg]_{max} - [k_{ass} \cdot [Ab]] \cdot [AbAg]) / (k_{diss} \cdot [AbAg]) \), where \([AbAg] \) is the concentration of bound complex at time \(t \), \([AbAg]_{max} \) is the concentration of bound complex at saturation and \([AbAg]_{max} = [AbAg] \) is the concentration of sites still remaining free at time \(t \), and \([Ab] \) is the constant concentration of Ab in the injected sample. Rearrangement of terms gives \(d[AbAg]/dt = (k_{ass} \cdot [Ab] \cdot [Ab] + k_{diss} \cdot [AbAg]) \), which can be simplified to \(d[AbAg]/dt = (\text{Const} - [k_{ass} \cdot [Ab]] + k_{diss} \cdot [AbAg]) \) or \(d[AbAg]/dt = \text{Const} - k_{diss} / [AbAg] \), and hence \(k_{o bs} = k_{ass} \cdot [Ab] + k_{diss} \). This can be understood from the observed approach to equilibrium being more rapid when both rates are fast.
The molecular model of the tetrameric mini-antibody MSL5-p53his was built by fusing the modular components of crystallographic or NMR coordinates of homologous or actual structures. The variable Ab domains of MSL5 are similar (70% kappa, 82% heavy) to those of the anti-progesterone Ab DB3 (PDB entry 1DBA) (54). The sequence of MSL5 was substituted to the DB3 sequence with no major structural adjustments, preserving the Fv interface. The linker was modeled with the structure of murine IgG2a upper hinge. For the structure of the p53 tetramerization domain, NMR coordinates were used (PDB entry 1OLG). All modeling was done with the INSIGHT program (Biosym, MSI, San Diego, CA) and the figure was prepared with MOLSCRIPT.

This experiment shows also that the large IgM is not significantly retarded in the matrix, as the intrinsic diffusion is very fast (arrow in Fig. 6). Thus, the intrinsic properties of LeY binding are not changed between any of the constructs, and the observed kinetics are changed exclusively because of binding with higher valency and the rebinding of individual domains and whole molecules observed under these conditions.

Discussion

The multimerization of Ag binding sites has been shown to be an effective means of increasing the functional affinity of bivalent whole Abs (10, 46–48). Multimeric, genetically, or chemically constructed Ab fragments have received considerable attention. A variety of formats has been investigated, such as mini-antibodies (25, 39, 40), diabodies (42, 43, 49), protein A-fusion proteins (50), disulfide-linked fragments (51, 52), or fragments joined with chemically attached spacers (53).

Earlier studies on the design of mini-antibodies, scFv fragments fused via a flexible hinge region to small self-assembling multimerization domains (25, 39, 40), demonstrated the feasibility of this route to self-assembling multivalent Ab fragments with high functional affinities. The initial constructs, however, while proving the principle, might not be ideal for therapeutic applications because of the potential immunogenicity of the previously used association domains, which are based on artificial helix bundles (25) or non-human zipper sequences (39, 40). We have therefore designed a novel association domain based on the tetramerization domain of human p53 that is able to combine small size (3.9 kDa), lowest possible immunogenicity, and compatibility with in vivo folding and the formation of stable tetrameric scFv fusion proteins in E. coli.

The crystal structure of the p53 tetramerization domain (28) reveals that the tetramer is assembled by two dimers that associate via hydrophobic interactions of α helices and β-strands (Fig. 8). Each dimer, on the other hand, is formed by antiparallel association of two monomers that consist of a β-strand connected to an α helix via a single glycine residue. Clearly, the spider-like model of the tetramerizing mini-antibody based on available structures of p53 (27, 28), human hinges (26), and MSL5 homologous Ab DB3 (54), presented in Figure 8, can only serve as an outline. However, it appears likely that the spatial orientation of the four N termini in the p53 crystal structure, in conjunction with the additional flexibility and reach provided by the human IgG3 upper hinge, would allow, in principle, up to three or perhaps even four fused scFvs to bind simultaneously to distant multimeric Ags. The ELISA and surface plasmon resonance measurements we have reported in this work bear this out, since the tetrameric mini-antibody MSL5-p53his shows significantly stronger binding to immobilized Ag than does the dimeric mini-antibody MSL5-dHLXhis.

A quantitative evaluation of the anti-LeY functional affinities as a function of valency, however, is complicated severely by the
dependence of the multivalent binding behavior on the assay conditions (40), such as Ag density. Furthermore, the rebinding of whole molecules is flow rate dependent in a BIACore experiment, such that only the relative binding properties under identical conditions are meaningful.

In ELISA measurements, detection of bound mini-antibodies via the N-terminal short FLAG epitope did not allow a direct comparison of signals of dimeric and tetrameric mini-antibodies due to the different number of FLAG tags on both constructs (four FLAG epitopes on the tetrameric mini-antibody vs two epitopes on the dimeric mini-antibody). The weak intrinsic affinity of a single MSL5 binding site (in the form of the scFv) for LeY is apparently not sufficient to survive the repeated washing steps of a functional ELISA. With BIACore, however, a weak but specific binding signal for the scFv can be detected (Fig. 5A), possibly due to a diabody-like monomer-dimer equilibrium and temporary bivalency. Because of the instantaneous achievement of a steady state indicated by a plateau (as it is typical for such systems (33)), the dissociation constant cannot be obtained from binding kinetics.

Multivalent binding requires conditions of sufficiently high Ag densities that in return will increase the on-rate such that the transport of the Igs to or away from the Ag can become limiting (45). Mass transport limitation may thus in principle lead to an underestimation of the on-rate that becomes apparent by deviations from pseudo-first-order kinetics. Thus, the larger IgM has a somewhat lower diffusion constant, lowering its rate of mass transport compared with the scFv. However, the large differences in the association phase of the different constructs are mainly due to a decreased k_{on} with higher valency, which is apparent in the association phase because of the simultaneous association and dissociation occurring (see above).

The sensorgrams of the dimeric mini-antibody, tetrameric mini-antibody, and IgM reflect the sum of several multiphasic binding kinetics. Trivalent binding, for example, can be described by several interdependent binding events, each having distinct rate constants. A fast second-order process of the initial collision and monovalent interaction between fragment and Ag is followed either by a fast dissociation (representing the intrinsic affinity) or the first-order formation of a bivalent and thus more stable complex. The first-order transition between monovalent and bivalent binding depends on the accessibility of further Ags, as well as the stability of the monovalent interaction. The bivalent complex either can partially dissociate into the monovalent complex or, favored by the longer resting time of the bivalent complex, form a trivalent complex. Therefore, the reassociation of partially dissociated complexes is highly dependent on the chosen Ag density and flow rate.

In contrast to standard kinetic determinations of thermodynamic affinities in which rebinding distorts calculated values of intrinsic affinities (45, 55), rebinding is of course part of the mechanism by which functional affinity is increased. Thus, the term rebinding does not only refer to the rebinding of completely dissociated Igs, but also to the rebinding of already dissociated binding arms, with one or more arms of the oligomeric construct still binding. The latter phenomenon of functional affinity will be more important, since the local concentration of Ags is much higher for partially dissociated constructs.

A qualitative description of multivalency effects at the chosen conditions can be based on the $t_{\text{D1/2}}$. Under identical conditions such as concentration of binding sites, Ag density, and flow rate, the tetrameric mini-antibody reaches a plateau, with about 20 times more binding sites attached to the surface at the end of the association phase than the scFv (Fig. 5). During dissociation, the $t_{\text{D1/2}}$ of tetrameric mini-antibody on the chip surface is elongated by a factor of more than 100 (Fig. 7). Since the decameric IgM shows an even longer $t_{\text{D1/2}}$ on the chip surface, a further optimization of mini-antibodies by oligomerization states higher than four could be useful for applications in which only weak intrinsic affinities can be achieved.

All three recombinant MSL5 constructs were expressed in similar functional yields in E. coli. Hence, the expression of either association domain as a C-terminal fusion protein has no detectable influence on secretion or folding of the Ab fragment, and allows assembly of functional multimeric anti-LeY Ab fragments in the periplasm of E. coli. In addition, the C-terminal His tail does not interfere with assembly or stability of either the dimeric or tetrameric mini-antibody, and allows rapid one-step purification via IMAC.

Since the native human p53 transcription factor contains a fourth domain fused C terminally to the tetramerization domain used in this study, it may be possible that a fusion of an effector function to the C terminus will result in a functional tetramer with targeting and effector activities. The crystal structure of the p53 tetramerization domain supports that view in that all four C termini are not only spatially well separated, but project in different directions.

The modular design of the different association domains allows the facile generation of fragments with defined valency and steric properties. For in vivo applications of anti-tumor mini-antibodies, the choice of association domain and oligomerization state should be guided by considerations such as immunogenicity, Ag density on tumor cells, preferred in vivo $t_{\text{1/2}}$, and tissue penetration ability. The functional affinity, m.w., and shape of injected Igs determine tissue penetration rates, as well as excretion rate by liver and kidney (56). The dimerization of an anti-phosphocholine scFv into bivalent mini-antibody elongated the plasma $t_{\text{1/2}}$ in mice by a factor of two to three compared with a monomeric scFv fragment (57). This correlation of in vivo $t_{\text{1/2}}$ and oligomerization state should result in an even further prolonged circulation time in case of the tetrameric, p53-based mini-antibody. This E. coli-expressible mini-antibody format with four binding sites may be an ideal design for applications in which fast excretion and poor functional affinity of a monovalent fragment do not result in a significant, long-lasting enrichment at the target.

Furthermore, the dependence of the functional affinity on the actual Ag density (39) should allow a distinction between different tissues having different Ag densities. LeY is found in high densities on colon and breast cancer cells, but in low densities on a variety of normal cells (18). Since Abs or immunotoxins with higher intrinsic affinity against LeY and related Ags also bind to cell surfaces with low Ag density, significant binding to normal tissues is observed (58). In principle, multimeric mini-antibodies with high functional but comparatively low intrinsic affinities are unable to bind to cells with low densities. Therefore, they should give rise to more selective targeting of cells with overexpressed Ags that favor multivalent binding.

In conclusion, the combination of peptides of human origin, such as the p53 tetramerization domain and a long and flexible hinge, represents a multimORIZATION device that allows the generation of small structures of human origin that self assemble to stable, tetrameric Ab fragments in E. coli. In addition, the use of small association domains for the self assembly of oligomeric structures represents a versatile method for optimizing any proteinaceous receptor-ligand interaction in which binding could be strongly enhanced by multimORIZATION of individual binding sites.

Acknowledgments

We are grateful to Simon Moroney (MorphoSys, Munich, Germany) and Prof. Gert Riehmüller (Institute of Immunology [IFI] at the Ludwigs-Maximilians-University, Munich, Germany) for critical review. We thank I. Contag (IFI) for providing the cancer cell lines and Christian Reiter for purification of the monoclonal IgM. We are also grateful to Lars Nieba and
References

