Different Equilibrium Stability Behavior of ScFv Fragments: Identification, Classification, and Improvement by Protein Engineering†

Arne Wörn and Andreas Plückthun*

Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Received January 27, 1999; Revised Manuscript Received March 24, 1999

ABSTRACT: A classification of scFv fragments concerning their unfolding/refolding equilibria is proposed. It is based on the analysis of different mutants of the levan-binding A48 scFv fragment and the HER-2 binding 4D5 scFv fragment as well as a “hybrid” scFv carrying the V\text{L} domain of 4D5 and the V\text{H} domain of an A48 mutant. The denaturant-induced unfolding curves of the corresponding scFv fragments were measured and, if necessary for the classification, compared with the denaturation of the isolated domains. Depending on the relative intrinsic stabilities of the domains and the stability of the interface, the different scFv fragments were grouped into different classes. We also demonstrate with several examples how such a classification can be used to improve the stability of a given scFv fragment, by concentrating engineering efforts on the “weak part” of the particular molecule, which may either be the intrinsic stability of V\text{L}, of V\text{H}, or the stability of the interface. One of the scFv fragments obtained by this kind of approach is extremely stable, starting denaturation only at about 7 M urea. We believe that such extremely stable frameworks may be very suitable recipients in CDR grafting experiments. In addition, the thermodynamic equilibrium stabilities of seven related A48 scFv mutants covering a broad range of stabilities in urea unfolding were shown to be well correlated with thermal aggregation properties measured by light scattering and analytical gel filtration.

Improving the stability of scFv1 fragments (1, 2) for biotechnological or medical applications is a major challenge for protein engineers. The relatively easy production of scFv fragments in bacteria (3, 4) and, compared with the parental mAb, their almost unchanged monomeric binding affinity (1, 4, 5) explain their increasing importance in many fields. ScFv fragments with increased stability were shown to have improved in vivo properties (ref 6; Willuda et al., manuscript submitted for publication). The molecular basis of observed differences in stability between different scFv fragments is, however, not really clear. An indispensable prerequisite for the future engineering of stability of these proteins is therefore to understand their equilibrium denaturation and their aggregation properties in greater detail.

One of the possibilities to examine scFv stabilities is to analyze their denaturant-induced equilibrium unfolding (7), by following the spectroscopic properties of the protein (8), such as tryptophan fluorescence. However, this denaturant-induced equilibrium unfolding of scFv fragments is not necessarily a simple two-state process, which would only involve the native and the completely denatured state of the protein. Instead, intermediate species may aggregate at equilibrium, involving one native and one denatured domain or interacting domains which are only partially unfolded. We have demonstrated the presence of such an intermediate with native V\text{H} and denatured V\text{L} domain before in the case of the A48cys(H-K66R/N52S) scFv fragment (9).

In this study, we use two model systems, the scFv fragments A48 and 4D5. The A48 scFv is derived from a levan binding antibody, ABPC48, naturally missing the V\text{H} intradomain disulfide (10–12). In previous work, this scFv fragment has been produced in a cysteine-restored form A48+ (carrying both intradomain disulfides, denoted “A48cys” in the earlier study) (11) and in a completely cysteine-free form (12). In the meantime, we have created and analyzed many further mutants of the A48 scFv fragment. The analysis of these mutants and of the p185\textsubscript{HER2}–ECD-binding 4D5 scFv fragment (13, 14), taken together with our previous results for some A48 scFv mutants (9), allows us to finally assemble a general model and to propose a classification of the denaturation behavior of scFv fragments. This classification puts scFv fragment into different classes, depending on the part of the scFv fragment which is limiting for the total stability of the protein. The stability-limiting property of the scFv fragment can either be the intrinsic stability of either one of its domains (V\text{H} or V\text{L}) or, alternatively, the stability of the interface.
The present study combines new data with previous studies on the A48 scFv (9). The combined data are analyzed to show examples of several different types of unfolding behavior in order to assemble a general model. The practical benefit of such a classification is that it can help to increase the stability of a given scFv fragment by first identifying and then improving its stability limiting part. This approach is demonstrated in the present study with several examples.

A further point investigated is the question of how the thermodynamic stability of scFv fragments, measured by equilibrium unfolding, correlates with their irreversible thermal aggregation properties. This question is of more practical relevance, because scFv fragments often tend to aggregate upon concentration, heating, or longer storage, and this aggregation tendency is one limiting factor for medical or biotechnological applications of scFv fragments. The comparison of stability against denaturant and thermal aggregation properties was performed by analyzing seven mutants of the A48 scFv fragment which cover a broad range of stabilities, yet differing between each other by only a few point mutations. This was possible because some mutants are lacking one or both of the conserved intradomain disulfide bonds, and several of these A48 fragments were stabilized by additional point mutations. The analysis of these scFv fragments included their denaturant-induced equilibrium unfolding, their aggregation temperature measured by light scattering at 500 nm, and their aggregation after prolonged incubation at 37 °C (which is below the actual aggregation temperature of all scFv fragments under investigation), monitored by analytical gel filtration.

EXPERIMENTAL PROCEDURES

ScFv Fragments Analyzed. Most of the scFv fragments studied (Figure 1) were derived from the A48 scFv fragment, either in its completely cysteine-free form lacking both intradomain disulfides (A48−−), in its cysteine-restored form, containing the disulfides in both VH and VL (A48+++) (11), or in its “wild-type” form lacking only the VH disulfide (A48−+). Several stabilizing mutations were introduced into these scFv fragments in different combinations. The mutations H-K66R and H-N52S in the heavy chain have been described in refs 9 and 12. The mutation H-Y92V in the heavy chain can only be introduced into the disulfide-free or the wild-type variants, because residue H92 is one of the positions forming the conserved intradomain disulfide bond. The L-T8P mutation in the light chain is a substitution toward the V L consensus sequence [classification of V H subgroups and numbering according to Kabat et al. (15)] and was shown to stabilize a different scFv fragment before (16).

All scFv fragments as well as the isolated domains under investigation are schematically represented in Figure 1 and described here: A48−−(H-K66R) [named A48−−(H1)], the double minus denoting that it is disulfide-free and the parenthesis indicating that it carries one stabilizing heavy chain mutation], A48−−(H-K66R/N52S) [named A48−−(H2)], A48−−(H-K66R/N52S/Y92V) [named A48−−(H3)], A48−−(H-K66R/N52S/Y92V)/(L-T8P) [named A48−−(H3L1)], A48−−(H-K66R/N52S)(SS) [named A48−−(H2)(SS)]—this protein carries an interface disulfide bond between the mutated framework positions Gly H44 and Gly L100, which are known to be in a suitable orientation to bridge the interface, when replaced by cysteines (17)], A48wt(H-K66R) [named A48−−(H1)], A48+++(H-K66R/N52S) [named A48+++(H2)], and A48+++(H-K66R/N52S)/(L-T8P) [named A48+++(H2L1)]. Additionally, the isolated disulfide-contain-
ing V_L domain of the antibody A48 without additional
mutations (named A48V_L^+) and the disulfide-free V_H domain
with the H-K66R/N52S mutations [named A48V_H^- (H2)]
have been examined. The seven selected A48 mutants
additionally analyzed for their thermal aggregation properties
are emphasized in Figure 1 with a black dot.

While four of the A48 mutants have been described before
[A48$^+$, A48$^+$ (H2), A48$^+$ (H1), and A48V_L^+ (9, 11)],
we need to include these denaturation transitions in the corre-
responding overlays, to be able to explain the proposed scFv
classification.

Furthermore, the 4D5 scFv fragment (13, 14) has been
used as a representative example for one of the proposed
scFv classes. Additionally, a “hybrid” scFv with the V_L
domain of the 4D5 linked to the V_H domain of the
A48$^+$ (H2) has been analyzed, as well as its interface
disulfide bridged derivative “hybrid” scFv (SS), where again
Gly H44 of the A48$^+$ (H2) V_H domain and Gln L100 of the
4D5 V_L domain were mutated to cysteines.

Protein Expression and Purification. Protein expression
and affinity purification of the A48 scFv fragments was
performed as described before (9, 11, 12). All A48$^-$
derived mutants, including the one carrying the interface disulfide,
the mutant A48$^-$ (H1), and the isolated A48V_H^- (H2) domain
were cloned into the vector pTFT74 (17, 18) and expressed
cytoplasmic inclusion bodies in *Escherichia coli* BL21DE3
[ompT+, lacUV5, T7 pol, int] (20). Refolding and purification of the interface-bridged
variant A48$^+$ (H2)(SS) and the A48$^+$ (H1) was performed
exactly as described for the A48 wt-derived mutants before
(9). Refolding and purification of the A48V_H^- (H2) domain
was analogous to the published procedure for the A48I1 (V$_H$)
domain (9), and all the remaining A48$^-$-derived mutants
were refolded and affinity purified as described for the
disulfide-free A48 mutants before (12).

Periplasmic expression in *E. coli* JM83 [lac-, ara, (lac
proAB), $rpsL$, $rpsL$, $rpsL$, $lacZ$] and purification of the scFv fragments A48$^+$, A48$^+$ (H2), and A48$^+$ (H2L1)
was carried out as described before (9). The 4D5 scFv
collecting the “hybrid” scFv, and its interface-bridged variant
were expressed periplasmically and purified as described for the
disulfide-containing 4D5 scFv fragment (14).

All A48-derived mutants were in a V_H-linker-V_L orienta-
tion, carrying an N-terminal FLAG (22) and a C-terminal
Myc- and His-tag (11). The 4D5-derived mutants as well as the
“hybrid” scFv fragments with and without the interface
disulfide were in a V_L-linker-V_H orientation, with the same
20-mer nonrepetitive peptide linker (23) and with the same
tags. Semiquantitative comparisons of scFv stabilities are
only performed between scFv fragments in identical orienta-
tions.

Urea- and GdnHCl-Induced Unfolding/Refolding Equilibria. Source-induced denaturation was followed by the
intrinsic fluorescence emission spectra of the proteins.
Excitation was at 280 nm. Measurements were performed
and analyzed as described before (12). All A48-derived
mutants were measured in BBS buffer (50 mM sodium
borate, pH 8.0, and 150 mM NaCl), the 4D5 and the “hybrid”
scFv fragments were measured in 40 mM Tris, pH 8.0, and
150 mM NaCl. It was verified that this difference in buffer
did not influence the transition curves (data not shown).
Depending on the stability of the analyzed mutants, either
urea or the stronger denaturant GdnHCl were used for the
stability measurements (Figure 2). To demonstrate the
extraordinary stability of the “hybrid” scFv (SS) in urea,
transition curves of this scFv fragment were measured in
both GdnHCl and urea. Proposed scFv classes are described
in Figure 3.

Limited Protease Digestion Studies. To characterize an
equilibrium intermediate present at 2 M GdnHCl, limited thermolysin digestion (24), subsequent SDS–PAGE (Figure
4), blotting, and N-terminal sequencing of the accumulating
digestion bands were performed with the 4D5 scFv fragment
as described for the A48 scFv fragment (H-K66R/N52S) before
(9). The digestion was performed in 2 M GdnHCl—
corresponding to the expected intermediate with native V_L
and denatured V_H in the 4D5 scFv fragment. A ratio of
thermolysin to scFv of 1:100 (w/w) was used and the final
scFv concentration in the digestion mix was 850 μg/mL.

Determination of Aggregation Temperature. The seven
A48 mutants indicated in Figure 1 were also analyzed for
their thermal aggregation properties. Their temperature of
aggregation was determined by light scattering similar as
described previously (25). A Shimadzu RF-5000 spectro-
fluorimeter was used. Excitation and emission wavelength
were 500 nm. The scFv samples were measured in BBS
buffer at 300 μg/mL (about 10 μM, with the exact molar
concentration differing minimally between the investigated
point mutants). After filtering through 0.2 μm Millipore
filters, they were heated in a 2 mL quartz cuvette in a volume
of 1.7 mL and continuously stirred with a small magnetic
stirrer. The temperature was controlled by a programmable
circulating water bath, and the exact actual temperature in
the cuvette was determined with blanks, using a small
temperature sensor in the cuvette to calibrate the water bath.
A temperature gradient of 0.5 °C/min was applied starting
from 25 °C up to the temperature which was necessary to
get the maximum intensity measurable by the spectropho-
rimeter. Intensities were measured every 0.2–0.5 °C (in
general, more points were measured when the scattered
intensity started to rise). Each intensity point depicted in the
plots (Figure 5, panels b and c) was averaged over 10
measured intensity values. The time period necessary for
collection of this set of 10 data points was about 10–15 s,
and therefore only a negligible intensity change occurred due
to the concomitant rise in temperature (about 0.1 °C). The
aggregation temperature was obtained from the intensity
versus temperature plot by linear extrapolation to the
temperature axis after correcting for minor background
scattering present from the beginning of the measurement.
This was done by linear fitting of the intensity values in the
pretransition region and setting the scattered intensity at
$T = 25$ °C to zero for all variants. To get an objective value
for the aggregation temperatures, all points exceeding
intensity values of 400 (see Figure 5) were used for linear
extrapolation. All measurements were performed in duplicate
or triplicate, and averaged values are given (see Figure 5c,
as an example for a representative triplicate measurement).

Analytical Gel Filtration. Analytical gel filtrations of the
seven selected A48 mutants (see above) were performed with a
SMART-system (Pharmacia), using a Superdex-75 column.
All measurements were conducted in BBS buffer with
0.005% Tween-20. The respective scFv fragments were
injected at 300 μg/mL (about 10 μM) in a volume of 50 μL.
The column was calibrated in the same buffer with alcohol-dehydrogenase (150 kDa), bovine serum albumin (66 kDa), carbonic anhydrase (29 kDa), and cytochrome c (12.4 kDa) as molecular mass standards. The amount of monomeric protein was quantitated by integrating the peak eluting at about 1.2 mL, which corresponds to monomeric scFv fragment. All scFv fragments were analyzed before the temperature incubation, immediately after 20 h of incubation at 37 °C, and again after 120 h incubation at 37 °C. The incubated samples were centrifuged for 5 min at 14000 g before applying them to the column to remove large aggregates which might block the Superdex-75 column.

RESULTS

Protein Expression and Purification. The purification yields of the periplasmically expressed A48 scFv fragments were about 1.2 mg for A48\sup{++}(H2) and A48\sup{++}(H2), respectively, and 0.7 mg for A48\sup{++}(H2L1) per liter of E. coli JM83. The scFv fragments expressed as cytoplasmic inclusion bodies

The column was calibrated in the same buffer with alcohol-dehydrogenase (150 kDa), bovine serum albumin (66 kDa), carbonic anhydrase (29 kDa), and cytochrome c (12.4 kDa) as molecular mass standards. The amount of monomeric protein was quantitated by integrating the peak eluting at about 1.2 mL, which corresponds to monomeric scFv fragment. All scFv fragments were analyzed before the temperature incubation, immediately after 20 h of incubation at 37 °C, and again after 120 h incubation at 37 °C. The incubated samples were centrifuged for 5 min at 14000 g before applying them to the column to remove large aggregates which might block the Superdex-75 column.

RESULTS

Protein Expression and Purification. The purification yields of the periplasmically expressed A48 scFv fragments were about 1.2 mg for A48\sup{++}(H2) and A48\sup{++}(H2), respectively, and 0.7 mg for A48\sup{++}(H2L1) per liter of E. coli JM83. The scFv fragments expressed as cytoplasmic inclusion bodies
yielded between 20 and 40 mg of purified protein/L E. coli BL21 after in vitro refolding. Only the mutant A48--(H3L1) had a significantly lower yield, and only about 2 mg of purified scFv fragment was obtained upon refolding of this protein per liter of culture. The purification yield for the isolated A48VH-(H2) was 2.9 mg/L E. coli BL21. Purification of the 4D5 scFv, secreted into the periplasm, resulted in about 10 mg of pure protein/L E. coli JM83 (14); the “hybrid” scFv was even better expressed in the periplasm, yielding up to 13 mg of scFv protein after purification from 1 L of culture. The purification yield of the “hybrid” scFv was, however, dramatically reduced to about 450 ìg/L E. coli JM83, when the interface disulfide bridge between H44 and L100 was inserted.

Urea- and GdnHCl-Induced Unfolding/Refolding Equilibria. The normalized denaturation curves of all investigated mutants used for the scFv classification are depicted in Figure 2, panels a, b, and d, while the curves of those A48 mutants additionally analyzed for their thermal aggregation properties are shown together with the respective aggregation data in Figure 5. Note that some curves are presented in both figures. While the shift in fluorescence emission maximum indicates the transition regions and the respective plateaus before and after the transition, it does not quantitatively reflect the fraction of unfolded protein in those cases which are not two-state transitions. The y-axis is therefore labeled “normalized emission maximum”, rather than “fraction unfolded”. The reason for nevertheless presenting the data in this normalized form is that this representation allows us to compare the position of different curves better than if the raw emission maximum data were shown.

For the very stable mutants in Figure 2b, the stronger denaturant GdnHCl was used, while urea was used to induce unfolding of the less stable proteins in Figures 2, panels a and d, and 5a. However, our interpretation does not require a quantitative comparison between urea and GdnHCl curves.

The emission maximum of all the mutants derived from A48− was close to 333 nm for the native proteins, while the A48++ scFv fragments and the A48−(H1) had an emission maximum of 336 nm. This shift in the emission maximum can be explained by the presence or the absence of the VL intradomain disulfide bond, which is known to quench the fluorescence emission of the Trp residue in its vicinity (26). The 4D5 scFv fragment as well as the “hybrid” scFv fragment had their fluorescence emission maximum at 336 nm, demonstrating that also in the “hybrid” scFv the interface between VH and VL had been formed. If the interface had not formed in this variant, the spectrum of the native “hybrid” scFv would be an algebraic sum of native VH and VL, which would clearly result in a higher maximum than 336 nm (27), because of the exposed interface Trp residues of VH and the subsequent red-shift in the fluorescence emission maximum. The fully denatured proteins had all emission maxima around 348–350 nm, consistent with the emission maximum of Trp in aqueous solution (28).

Figure 2a shows an overlay of the denaturation curves corresponding to the three related scFv fragments A48−(H2), A48−(H3), and A48−(H3L1) which differ only in stabilizing point mutations. The A48−(H2) scFv fragment showed a relatively flat transition (filled triangles compared to filled squares). We interpret this as the two domains denaturing slightly one after the other. Upon addition of the mutation H-Y92V, which stabilizes VH, a clear step appeared in the denaturation curve of this scFv fragment (striped open squares), and the upper part of the denaturation transition was now shifted to higher urea concentrations, while the lower part remained unchanged.

Urea- and GdnHCl-Induced Unfolding/Refolding Equilibria. The normalized denaturation curves of all investigated mutants used for the scFv classification are depicted in Figure 2, panels a, b, and d, while the curves of those A48 mutants additionally analyzed for their thermal aggregation properties are shown together with the respective aggregation data in Figure 5. Note that some curves are presented in both figures. While the shift in fluorescence emission maximum indicates the transition regions and the respective plateaus before and after the transition, it does not quantitatively reflect the fraction of unfolded protein in those cases which are not two-state transitions. The y-axis is therefore labeled “normalized emission maximum”, rather than “fraction unfolded”. The reason for nevertheless presenting the data in this normalized form is that this representation allows us to compare the position of different curves better than if the raw emission maximum data were shown.

For the very stable mutants in Figure 2b, the stronger denaturant GdnHCl was used, while urea was used to induce unfolding of the less stable proteins in Figures 2, panels a and d, and 5a. However, our interpretation does not require a quantitative comparison between urea and GdnHCl curves.

The emission maximum of all the mutants derived from A48− was close to 333 nm for the native proteins, while the A48++ scFv fragments and the A48−(H1) had an emission maximum of 336 nm. This shift in the emission maximum can be explained by the presence or the absence of the VL intradomain disulfide bond, which is known to quench the fluorescence emission of the Trp residue in its vicinity (26). The 4D5 scFv fragment as well as the “hybrid” scFv fragment had their fluorescence emission maximum at 336 nm, demonstrating that also in the “hybrid” scFv the interface between VH and VL had been formed. If the interface had not formed in this variant, the spectrum of the native “hybrid” scFv would be an algebraic sum of native VH and VL, which would clearly result in a higher maximum than 336 nm (27), because of the exposed interface Trp residues of VH and the subsequent red-shift in the fluorescence emission maximum. The fully denatured proteins had all emission maxima around 348–350 nm, consistent with the emission maximum of Trp in aqueous solution (28).

Figure 2a shows an overlay of the denaturation curves corresponding to the three related scFv fragments A48−(H2), A48−(H3), and A48−(H3L1) which differ only in stabilizing point mutations. The A48−(H2) scFv fragment showed a relatively flat transition (filled triangles compared to filled squares). We interpret this as the two domains denaturing slightly one after the other. Upon addition of the mutation H-Y92V, which stabilizes VH, a clear step appeared in the denaturation curve of this scFv fragment (striped open squares), and the upper part of the denaturation transition was now shifted to higher urea concentrations, while the lower part remained unchanged.

Figure 4: Limited thermolysin digestion of 4D5 scFv fragment in the presence of 2 M GdnHCl (which is the concentration where VH appears to be denatured and VL seems to be folded, based on the transition curve). Even after long digestion time, mainly two fragments (labeled F1 and F2) which convert to one fragment (F2) after 13.5 h digestion accumulated, which both had the same N-terminus of the 4D5 VL domain—indicating that the 4D5 VL is indeed still native under these conditions. Note that the marker band is distorted by the GdnHCl present in the samples running in the neighboring lanes.
In Figure 2b, an overlay of five different GdnHCl denaturation curves is depicted. The denaturation curves of the A48\(^{++}(H2)\) and A48\(^{++}(H2L1)\) fragments both showed clear steps in their transition curves. It can thus be seen that the additional L-T8P mutation did result in a shift of the lower curve to higher denaturant concentrations—similar as seen in Figure 2a for the fragment A48\(^{-}(H3)\) and A48\(^{-}(H3L1)\). However, in contrast to A48\(^{-}(H3L1)\), a clear intermediate species remained in the A48\(^{++}(H2L1)\) (open circles). The denaturation curve of the scFv fragment 4D5 (filled circles) did not show such an obvious step. However, a very small step is apparent at about 2–2.5 M GdnHCl in the region where many data points were collected. Several pieces of supporting evidence (see below) suggest that this is a real transition, in which VL is denaturing, while VH is already denaturing at about 1.5 M GdnHCl.

Since the small step in the 4D5 unfolding curve is believed to represent an equilibrium intermediate with native VL and denatured VH (see below) and since the clearly visible steps in the A48\(^{++}\)-derived mutants represent intermediates with native VH and denatured VL, the “hybrid” scFv consisting of the very stable VL domain of 4D5 and the very stable VH domain of A48\(^{++}(H2)\) should then be extraordinarily stable. Indeed, this “hybrid” scFv fragment turned out to be not only extremely well expressed in the periplasm (13 mg/L after purification), but also to be highly stable, starting denaturation only at about 2.5 M GdnHCl with a midpoint at 3.0 M GdnHCl (Figure 2b, open triangles). This “hybrid” scFv could be even further stabilized by introducing the interface disulfide bond, resulting in a further shift of the denaturation curve by about 0.4 M GdnHCl to higher denaturant concentration (Figure 2b, filled triangles), but at the expense of lower expression yields (see above). Figure 2c underlines the extraordinary stability of the “hybrid” (SS) scFv fragment. It starts denaturing only at about 7 M urea, a concentration where many scFv fragments have already finished their transition and are fully denatured. In this particular case, the raw data of the emission maximum are shown, because the curve could not be normalized due to the absence of the transition and post-transition region.

The transition curve of the other interface disulfide bridged variant studied, A48\(^{-}(H2)(SS)\) (Figure 2d, open squares), is overlaid with the curves corresponding to its isolated VH domain (crosses) and its VL domain (dotted open circles), which, however, carries an intradomain disulfide bond. Note that the same VL domain without the intradomain disulfide, as present in A48\(^{-}(H2)(SS)\), could not be successfully expressed on its own, probably due to its low stability (data not shown), as it would be expected to have an even earlier transition than the VL domain with the intradomain disulfide. The transition of the A48\(^{-}(H2)(SS)\) fragment occurred with a midpoint at about 4.8 M urea and therefore significantly later than the transition of either of its constituting domains.

The seven different A48 mutants used for comparison with thermal aggregation properties (Figure 5) denatured at widely different urea concentrations, from a denaturation midpoint of 2.7 M for the scFv fragment A48\(^{-}(H1)\) to 6.6 M for the cysteine-restored variant A48\(^{-}(H2L1)\) (Figure 5a, see Table 1 for exact numbers of denaturation midpoints).

Limited Protease Digestion Studies. After prolonged thermolysin digestion of the 4D5 scFv fragment in the presence of 2 M GdnHCl, mainly two fragments of about
with their similar denaturation midpoints. The interface-averaged aggregation temperatures of 53.0 °C were between 45.1 °C or triplicate measurements. Performed on different days (Figure 5c). The error bars in caused a decrease of about 2 °C in the aggregation temperatures identified, when comparing all between the denaturation midpoints in urea unfolding and good correlation (correlation coefficient 0.97) was found observed for the two cysteine-restored variants. Overall, a mutants with two obvious transitions, like A48°C for scFv A48°C at 55.0 °C, which is below the transition temperature for all (H2) had similar aggregation temperatures. The (H1) and A48°C (H1) and A48°C (H2)(SS) had its onset of aggregation °C, consistent with their similar denaturation midpoints. The interface-bridged variant A48°C (H2)(SS) had its onset of aggregation at 55.0 °C. Significantly higher denaturation temperatures of 63.2 °C (A48++) and 70.8 °C [A48++;(H2L1)] were observed for the two cysteine-restored variants. Overall, a good correlation (correlation coefficient 0.97) was found between the denaturation midpoints in urea unfolding and the aggregation temperatures identified, when comparing all seven scFv fragments (Figure 5d).

We have to point out, however, that the x values in Figure 5d are not completely unambiguous. Especially in the mutants with two obvious transitions, like A48++(H2L1) or, less pronounced, A48++, one would, strictly speaking, have to take the midpoint of the first transition of the denaturation curve for use in Figure 5d, as the protein loses its function there. However, the change from a clear two-step transition to a clear one-step transition in the equilibrium denaturation curves is gradual. A classification of the scFv fragments into two groups, where either the midpoint of the entire transition or of the first “step” of the transition is taken as a semiquantitative measure of stability would therefore be arbitrary. We thus decided to use the midpoint of the entire transition in all cases, even if the transitions are clearly not two-state.

Analytical Gel Filtration. After 20 h of incubation at 37 °C only the two least stable variants A48°C(H1) and A48°C(H2) showed a significant decrease in the amount of remaining monomeric protein (open circles, Figure 6a). For all other scFv fragments, more than 80% was still monomeric protein. Apparently, the incubation time of 20 h was not long enough to distinguish between the more stable scFv fragments. Interestingly, only 1.7% of A48°C(H2) was monomeric after 20 h at 37 °C, while 30.1% of A48°C(H1) survived the same treatment as monomeric species. Therefore, these gel filtration data reflect the slightly lower aggregation temperature measured for the scFv fragment A48°C(H2) compared with A48°C(H1), while they do not correspond to the higher denaturant midpoint of A48°(H2). Apparently, the mutation H-N52S is stabilizing in equilibrium urea denaturation but negatively influences the aggregation behavior upon heating the protein.

When the incubation time at 37 °C was extended to 120 h, more of the mutants could be compared, as they were no longer all stable and the proportionality range in the plot of aggregation temperature versus monomeric protein was shifted to higher aggregation temperatures (filled triangles, Figure 6a). After 12 h at 37 °C, only the cysteine-restored variants were still more than 90% monomeric, whereas in all other variants, less than 40% of scFv protein remained monomeric. On the other hand, a discrimination between the two least stable scFv fragments A48°C(H1) and A48°C(H2) was now no longer possible, because both these proteins were completely aggregated after 120 h incubation at 37 °C, while they could still be distinguished after 20 h of incubation. A representative set of gel filtration chromatograms is shown in Figure 6b. The overlay of the curves obtained for the fragment A48++(H1) without incubation at 37 °C and after 20 and 120 h of incubation at 37 °C demonstrates that the aggregation peak did not increase proportionally to the decrease of the peak representing monomeric scFv fragment, most likely because larger aggregates were removed by centrifugation before all gel filtration runs.

The urea unfolding midpoints, the averaged aggregation temperatures from duplicate or triplicate measurements, and the percentage of monomeric protein after 20 and 120 h of incubation at 37 °C are summarized for the seven analyzed A48 scFv fragments in Table 1.

DISCUSSION

On basis of the different shapes of the denaturant-induced equilibrium unfolding curves and on the interpretation of the fluorescence spectra, which can be assigned to denatured, native, and assembled domains (27), we propose a classification of scFv fragments regarding the relative stability.

<table>
<thead>
<tr>
<th>ScFv fragment</th>
<th>midpoint urea denaturation (M) °C</th>
<th>averaged aggregation temp. (°C)</th>
<th>monomeric scFv after 20 h at 37 °C (%)</th>
<th>monomeric scFv after 120 h at 37 °C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A48°C(H1)</td>
<td>2.7</td>
<td>47.2</td>
<td>30.1</td>
<td>0</td>
</tr>
<tr>
<td>A48°C(H2)</td>
<td>3.2</td>
<td>45.1</td>
<td>1.7</td>
<td>0</td>
</tr>
<tr>
<td>A48++(H1)</td>
<td>3.8</td>
<td>53.0</td>
<td>80.7</td>
<td>41.2</td>
</tr>
<tr>
<td>A48°C(H3L1)</td>
<td>4.0</td>
<td>53.0</td>
<td>84.5</td>
<td>29.3</td>
</tr>
<tr>
<td>A48°C(H2)(SS)</td>
<td>4.7</td>
<td>55.0</td>
<td>85.4</td>
<td>37.3</td>
</tr>
<tr>
<td>A48++</td>
<td>5.6</td>
<td>63.2</td>
<td>99.2</td>
<td>90.3</td>
</tr>
<tr>
<td>A48++(H2L1)</td>
<td>6.6</td>
<td>70.8</td>
<td>94.0</td>
<td>91.8</td>
</tr>
</tbody>
</table>
intrinsic stabilities of the isolated VH and VL domains in an extreme cases can be envisaged, depending on the relative stability in the absence of any interacting domain. Different contribution of the interface. The intrinsic stability is the sum of the intrinsic stability of A and the stabilizing discussed previously (9). From the study of single domains and their association (9, 27), a few general conclusions can be drawn. VH in general carries a single conserved Trp at position L35. This is almost completely quenched in the native state and thus contributes very little to the spectrum of a native scFv. In contrast, VH usually has 4–5 Trp residues, one of them at the corresponding position H36, the others at positions quite solvent exposed in the isolated VH domain. Since this Trp H36 contributes only a small fraction to the fluorescence of native VH, the observed red-shift in fluorescence emission maximum upon denaturation of an isolated VH domain is usually only a few nanometers (9, 27). In the case of disulfide-free variable domains, the quenching of Trp L35 upon folding is less pronounced, resulting in an enhancement of fluorescence intensity of this deeply buried residue in the native state, which shifts the entire emission maximum of the scFv fragment to a discernible lower wavelength. When VH and VL form a complex, some Trp residues (usually around 3, the ones at position H47 and H103 being highly conserved) become buried in the interface, and thus, their emission maximum is shifted to lower wavelength.

It is also customary to analyze equilibrium transitions by following the fluorescence intensity, for example at 350 nm (8). An increase in the fluorescence intensity at 350 nm upon denaturation of VL (9, 27), an increase (27) or decrease (9) upon denaturation of VH, and a slight decrease (27) upon disruption of the interface can be observed. These intensity changes are, however, strongly scFv dependent, and general predictions about their amplitude and direction are therefore not possible. In addition, the denaturation of one of the domains of the scFv fragment will in most cases happen simultaneously with interface disruption (with the exception of case IV, see below). Therefore, the changes in intensity at 350 nm can mutually compensate each other. Note that this effect is not observed when fluorescence emission maximum data are analyzed, because here all three processes (denaturation of VH, VL, and interface disruption) cause a change of the emission maximum to higher wavelength, i.e., in the same direction (see below), albeit by only small amounts for some transitions. Nevertheless, in some cases, the intensity data may give supporting information about equilibrium intermediates and can corroborate the occurrence of two-state transitions.

In our experiments, we estimate thermodynamic stabilities from the urea denaturation transitions only semiquantitatively by giving the midpoints of the unfolding curves. As is well-known, one can derive ΔG values from unfolding curves (32), but a necessary prerequisite for this procedure is that the unfolding follows the two-state model or that the curve can clearly be broken down in several two-state processes.
In the present set of scFv fragments, however, this prerequisite is clearly not fulfilled for most of the mutants. In the two-state model, the m-value, which describes the steepness of the transition curve, also affects the calculation of free energies, by affecting the extrapolation to zero denaturant (33). However, in our scFv fragments, the steepness is influenced in most cases by the fact that the two domains of the scFv fragment do not unfold cooperatively, but one after the other, even if no obvious step is visible in the unfolding curve, such as, for example, described for the A48^+~(H2) scFv fragment above. This observation may actually apply to many scFv fragments, in which case calculations of ΔG values are not appropriate, and we suggest to give only the denaturation midpoints as semiquantitative stability estimates. Moreover, deriving free energies from fluorescence emission maximum curves is problematic in general, because this may only be adequate when the fluorescence emission maximum changes proportionally with the population of macrostates, i.e., when it reflects the mole fraction of native and denatured molecules. This will only be the case if the quantum yield of native and denatured states is the same (8).

In the present classification, we refer to the domains as V_A and V_B, where either one can be V_H or V_L. Thus, the classification is based on relative stability of V_A versus V_B, and we define V_A as the intrinsically more stable domain. Thus, there can be two subcases, one where V_A is V_H, the other where V_A is V_L, and V_B is the respective partner.

Classes of ScFv Fragments. In class I (Figure 3), the intrinsic stability of one domain is significantly higher than the total stability (intrinsic plus extrinsic contribution) of the other domain. Consequently, an unfolding intermediate will accumulate at equilibrium, where one domain is completely unfolded while the other domain is still native. A visible step in the unfolding curve is one indication for this kind of scFv fragments. This step in the fluorescence emission maximum representation will be relatively large and easy to make out if V_L denatures earlier than V_H, mainly due to the interface Trp residues of V_H (see above) which become solvent-exposed upon denaturation of V_L.

If V_H denatures before V_L, however, the step will usually be much more difficult to discern, because V_L has often only one Trp residue (see above), and therefore the further shift in the fluorescence emission maximum caused by denaturation of V_L in the presence of an already denatured V_H will be relatively small. The exact size of the observed step will vary from scFv to scFv and be mainly dominated by the amount and position of the Trp residues in V_H and V_L. An important piece of further experimental evidence for such an equilibrium intermediate with one domain being native and the other being unfolded is that the denaturation of the isolated more stable domain will occur at the same denaturant concentration as the second step in the scFv unfolding curve (9). Moreover, limited thermolysin digestion (9, 24) of the scFv at the particular denaturation concentration where the intermediate is expected, based on the unfolding curve, should result in the accumulation of a stable core fragment comprising the more stable scFv domain.

In class II (Figure 3), the intrinsic stability of one domain is in the same range as the total stability of the other domain. This means that the interface has increased the total stability of the weaker domain to almost the same level as the stability of the stronger domain. No step will be detectable in the equilibrium unfolding curve based on the emission maximum. However, the transition region can be conspicuously gradual, which is a consequence of the two domains unfolding one right after the other. Therefore, the transition may only seemingly be two-state, but is actually a superposition of two transitions occurring quite close together. Any minor further stabilization of the intrinsically more stable domain will result in a step in the denaturation curve and therefore lead to class I.

ScFv fragments falling into class III (Figure 3) consist of two domains of relatively low intrinsic stability which are linked by a very stable interface. In this situation, the transition of the entire scFv fragment in equilibrium unfolding takes place much later than the transition of either isolated domain. Each domain provides extrinsic stabilization to the partner domain, and an early disruption of the interface, which would leave the domains only with their low intrinsic stabilities, is prevented. Because of the low intrinsic stabilities of the isolated domains, the breaking up of the V_H-V_L interface is necessarily linked to the intermediate denaturation of the isolated domains, which are already far above their intrinsic stability at the denaturant concentration where the interface disrupts. A steep transition of the unfolding curve—in this case describing a real two-state transition—and transition curves of the isolated domains with transitions at much lower denaturant concentration than the curve of the scFv fragment are experimental evidence for this kind of behavior.

A further case one might postulate is class IV (Figure 3). In this situation, two intrinsically very stable domains are linked by a weak interface. The breaking up of the V_H-V_L interface will occur at lower denaturant concentration than the denaturation of either of the domains. The order of their subsequent denaturation will solely depend on the relative intrinsic stabilities of V_H and V_L. Although we could not find any scFv fragment belonging to class IV so far, we should be able to predict how such a denaturation curve should look like. The processes, disruption of the interface, denaturation of V_H, and denaturation of V_L will all result in a red-shift of the fluorescence emission maximum, because Trp residues, which were in the hydrophobic interface region or in the interior of the domains in the native protein, will then become solvent exposed. Therefore, the first step in the fluorescence emission maximum transition should be caused by disruption of the interface and subsequent exposure of the V_H Trp residues positioned in the interface region. The resulting spectrum would be the computational addition of the spectra of V_L^N and V_H^N. The first step will be followed by a second and perhaps third step in the denaturation curve, depending on whether the V_H and V_L domain happen to denature at the same denaturant concentration or differ in their intrinsic stability. In class IV, in contrast to class I, the first transition should occur at lower denaturant concentration than the transition of either isolated domain.

Examples of ScFv Fragments for the Different Classes. One scFv fragment which can be placed into class I (Figure 3) is A48^+~(H2) [A48cys(H-K66R/N52S)], whose unfolding equilibrium intermediate with native V_H and denatured V_L has been described in detail before (9). The same relationship—the intrinsic stability of V_H being significantly higher than the total stability of V_L—is also found in the scFv fragment A48^−~(H3) (Figure 2a) described in this study. In this...
mutant, we see a clear step in the fluorescence emission maximum unfolding curve, representing such a defined equilibrium intermediate.

An example of the reciprocal case, where the intrinsic stability of V_L is significantly higher than the total stability of V_H and where an equilibrium intermediate with native V_L and denatured V_H accumulates at equilibrium at about 2–2.5 M GdnHCl concentration, is the 4D5 scFv fragment. We have described the urea unfolding of this scFv fragment before (14), without being aware of such an intermediate. The reason for this is that even at the highest urea concentration used in our previous experiment (9 M), the unfolding of V_L had probably not completely occurred yet. Only with GdnHCl as a much stronger denaturant the second transition becomes apparent—even though it is very hard to make out in the unfolding curve by monitoring the fluorescence emission maximum (Figure 2b), for the reasons mentioned above. However, corroborating evidence could be obtained by limited thermolysin digestion, similar to the reciprocal case with native V_H and denatured V_I in A48$^{++}$(H-K66R/N52S), observed at 6 M urea before (9). Limited thermolysin digestion of the 4D5 scFv fragment in the presence of 2 M GdnHCl resulted in the accumulation of initially two main bands which both contain the entire V_L domain, and, after very long digestion convert into one main fragment (Figure 4). This underlines that the V_L domain of the 4D5 scFv fragment is indeed structured under these conditions, while V_H is not. Further evidence for the equilibrium intermediate present in the scFv fragment 4D5 at 2 M GdnHCl comes from kinetic experiments showing that 4D5 scFv fragment refolded from 2 M GdnHCl is lacking the slow Pro-isomerization limited phase, suggesting that the Pro L95 is still in a cis configuration at 2 M GdnHCl. This demands that the 4D5 V_L domain must still be native under these conditions (34).

An example for a scFv fragment where the intrinsic stability of one domain is in the same range as the total stability of the other domain and which can therefore be placed into class II (Figure 3) is A48$^{--}$(H2). As seen in Figure 2a this scFv fragment has a conspicuously flat transition curve. Evidence for the fact that this transition is actually a superposition of two transitions occurring close together, first V_L, then V_H, comes from the fact that a step becomes apparent in the unfolding curve of the scFv fragment, as soon as the V_H domain in this scFv fragment is further stabilized by introducing the additional V_H mutation Y-92V. The same situation applies to A48$^{++}$ described previously (9), since in this scFv fragment the flat transition curve is also resolved into a clear two-step transition, represented by a step in the denaturation curve, as soon as the already slightly more stable V_H domain is further stabilized by introducing the mutation H-K66R.

Finally, we want to give an example for class III (Figure 3), the situation where two intrinsically quite unstable domains are linked by a very stable interface. We have created such a molecule in the case of the interface disulfide-bridged variant A48$^{--}$(H2)(SS). The midpoint of its transition is at 4.7 M urea (Figure 2d). The corresponding isolated V_L domain, however, even with the disulfide bridge, denatures with a midpoint at 2.3 M urea, as analyzed previously (9). The disulfide-free one would be even significantly less stable, and expression by itself was not feasible at all. The A48V_H^{--}(H2) domain, which is part of this scFv, has a denaturation midpoint at 3.3 M urea, which is also clearly earlier than the A48$^{--}$(H2)(SS) scFv transition. It can be noticed that the A48$^{--}$(H2)(SS) has indeed a rather steep transition curve and represents probably the only scFv fragment among the A48 mutants analyzed here which has a two-state unfolding behavior.

Predictions of how the corresponding scFv fragments can be further stabilized can immediately be derived from the classification of a given scFv fragment. The A48$^{++}$(H2) scFv fragment could, for example, be stabilized by introducing the V_L stabilizing mutation L-T8P, creating the scFv fragment A48$^{++}$(H2L1), because V_L was (and still is) limiting for the stability of this scFv fragment (Figure 2b, open circles). The identical situation applies to A48$^{--}$(H3) (Figure 2a). Here, the addition of the L-T8P mutation also caused a shift of the first part in the unfolding curve, representing the V_L transition, to higher denaturant concentrations (Figure 2a, closed squares), thereby stabilizing the scFv fragment.

The 4D5 scFv fragment, on the other hand, can only profit from stabilizing its V_H domain, which is clearly limiting for the stability of this scFv fragment. In fact, we could create the extremely stable “hybrid” scFv fragment, denaturing with an unfolding midpoint of 3.0 M GdnHCl, by genetically linking the very stable V_L domain of the scFv fragment 4D5 to the very stable V_H domain of scFv A48$^{++}$(H2) (Figure 2b). This “hybrid” scFv fragment, although not binding any antigen at present, may be a very suitable acceptor in CDR grafting experiments (Wörn et al., manuscript in preparation). Besides its extraordinary stability it is also very well expressed.

To prove the more or less additive effect of intrinsic and extrinsic stability contributions further, we have inserted an interface disulfide bond into the “hybrid” scFv fragment. This disulfide bond did, as seen in Figure 2b, indeed cause a further shift of the GdnHCl denaturation curve to higher concentrations, because the two domains are now “forced” to remain associated longer, providing more extrinsic stabilization to the partner domain. The “hybrid” (SS) scFv fragment remained native up to about 7 M urea (Figure 2c). The dramatically decreased purification yield of the periplasmically expressed interface-bridged variant “hybrid” (SS) scFv, however, was to be expected (35), because the additional two cysteines H44 and L100 will allow the formation of multiple incorrectly disulfide bridged variants in the oxidizing environment of the periplasm.

ScFv fragments belonging to class IV (Figure 3), if they occurred, could clearly be stabilized by stabilizing the V_H-V_I interface, possibly by introducing an interface–disulfide bond. It may be more difficult to gain further stabilization of scFv fragments with domains of low intrinsic stability, linked by a very stable interface (class III in Figure 3), because one of the domains would have to be stabilized significantly to provide further extrinsic stabilization to the other domain.

While it may sometimes be difficult to group any given scFv fragment into one of the proposed classes, especially since the borderlines are often not that clear, we believe that such a classification is very useful for increasing the stability of a scFv fragment. Clearly, the prerequisite for such an undertaking is the knowledge, which part of the scFv is limiting for its stability and therefore needs to be improved.
Correlation between Urea Denaturation Midpoints and Aggregation Properties. The strong overall correlation between the midpoint in urea denaturation and the aggregation temperature observed in the seven mutants of the A48 scFv fragment investigated is in agreement with similar results described for other model systems. Chrunyk and Wetzol (25) investigated the relationship between aggregation temperature and thermodynamic stability in different Interleukin-1β point mutants and also found a general proportionality, although one mutation resulted in a protein aggregating 7 °C lower than expected from its thermodynamic stability. A similar situation in the A48 scFv fragment model system is observed in the case of the H-N52S mutation, which stabilizes the protein during equilibrium unfolding in urea, causing a shift of the transition curve to higher urea concentration, but slightly decreases the aggregation temperature. The mechanistic reason for this discrepancy, however, cannot be extracted from our experiments.

With our model system, we can show that the overall strong correlation of aggregation temperature and urea unfolding behavior seems to be valid over a wider range of stabilities than ever tested before. While the eight Interleukin-1β variants investigated by Chrunyk and Wetzol all aggregated within a window of 6 °C (25), the most stable and the least stable A48 scFv mutants investigated here differ in their aggregation temperature by 25.7 °C. Moreover, the long-term stability against aggregation at 37 °C, monitored by analytical gel filtration, is also closely linked to the actual aggregation temperature determined by light scattering.

In many proteins, partially unfolded intermediates expose hydrophobic parts, which are buried in the native structure and are believed to be responsible for aggregation (36–40). These intermediates may be populated in equilibrium unfolding transitions, but they are kept in solution by the action of the denaturant (36), which may directly interact with the protein and influence the properties of the solvent. Therefore, a correlation between thermodynamic stability and aggregation temperature would require that the intrinsic aggregation rate of the intermediate is about the same for the mutants and that the mutations only influence under which environmental conditions (temperature or denaturant) this intermediate is significantly populated. However, the overall rate of aggregation and the temperature influence may also depend on the aggregation rate of the intermediate itself. In addition, single mutations may act by favoring non-native interactions that stabilize aggregates, without necessarily decreasing the thermodynamic stability of the native protein. The possible effects of single mutations on the mechanism of aggregation are comprehensively reviewed in ref 41.

In summary, our studies demonstrate that thermodynamic stabilities and thermal aggregation correlate well for the scFv fragments investigated. Thus, measuring scFv stabilities by analyzing denaturation induced unfolding curves and their interpretation as detailed here may turn out to be a good predictor for scFv stabilities during in vivo applications and pave the way to highly robust antibody fragments. Indeed, an improved in vivo performance of a scFv fragment with increased in vitro stability has been reported for a mutant scFv fragment derived from the mAb B3 (6) and for a stabilized version of the MOC31 scFv fragment (Willuda et al., manuscript submitted for publication). However, we have to qualify that “stability” of a scFv fragment in the human body, defined as functional half-life, is undoubtedly much more complicated and will not only be influenced by thermal aggregation but also by proteolysis, blood clearance and other effects. It is a very important challenge to understand the molecular basis of these different contributions in the future.

REFERENCES

BI9902079