The influence of the framework core residues on the biophysical properties of immunoglobulin heavy chain variable domains

Annemarie Honegger, Alain Daniel Malebranche1, Daniela Röthlisberger2 and Andreas Plückthun3
Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
1Present address: University of British Columbia, Faculty of Medicine, Class of 2011, Vancouver, BC V6T 1Z3, Canada.
2Present address: Department of Biochemistry, University of Washington, HSB 1555, Box 35730, Seattle, WA 98195, USA.
3To whom correspondence should be addressed. E-mail: plueckthun@bioc.uzh.ch

Antibody variable domains differ considerably in stability. Single-chain Fv (scFv) fragments derived from natural repertoires frequently lack the high stability needed for therapeutic application, necessitating reengineering not only to humanize their sequence, but also to improve their biophysical properties. The human VH3 domain has been identified as having the best biophysical properties among human subtypes. However, complementarity determining region (CDR) grafts from highly divergent VH domains to huVH3 frequently fail to reach its superior stability. In previous experiments involving a CDR graft from a murine VH domain of very poor stability to huVH3, a hybrid VH framework was obtained which combines the lower core residues of mUVH9 with the surface residues of huVH3. It resulted in a scFv with far better biophysical properties than the corresponding grafts to the consensus huVH13 framework. To better understand the origin of the superior properties of the hybrid framework, we constructed further hybrids, but now in the context of the consensus CDR-H1 and -H2 of the original human VH3 domain. The new hybrids included elements from either murine VH9, human VH1 or human VH5 domains. From guanidinium chloride-induced equilibrium denaturation measurements, kinetic denaturation experiments, measurements of heat-induced aggregation and comparison of soluble expression yield in Escherichia coli, we conclude that the optimal VH framework is CDR-dependent. The present work pinpoints structural features responsible for this dependency and helps to explain why the immune system uses more than one framework with different structural subtypes in framework 1 to optimally support widely different CDRs.

Keywords: antibody engineering/framework 1 structure/immunoglobulin variable domains/scFv fragment/stability

Introduction

Antibodies differ considerably in sequence, not only within their complementarity determining regions (CDRs), but also in the framework (FR), with significant consequences for their biophysical properties. These sequence differences are encoded in the different V-genes, and can get further amplified by somatic point mutations. However, we are mostly concerned here with the conserved differences between whole germline families and the structural subtypes encoded by them.

Based on sequence homology, human VH genes can be clustered into seven, murine into 15 germline families (IMGT database, (Lefranc et al., 2005)), with only 36% sequence identity between the consensus sequences representing the most distantly related human VH germline families, huVH1 and huVH2, and 31% sequence identity between the consensus sequences of the most distantly related murine VH germline families, mUVH1 and mUVH8 [91–101 amino acids compared, residues H1–H108 according to the AHo numbering scheme used throughout this paper (Honegger and Plückthun, 2001a), corresponding to residues H1–H94 according to Kabat et al. (1991)]. If CDR-H1 and CDR-H2 are omitted from this analysis, the numbers increase still only to 42% identity between the most distant human and 35% identity between the most distant murine sequences (76 amino acids compared). Thus, while the germline sequences have diverged significantly within one species, one finds more closely homologous families between mouse and man: the human germline family consensus sequences show between 60% (huVH5/muVH14) and 81% (huVH3/muVH5) sequence identity to the closest murine consensus sequence, 66–84% if only the framework residues are compared.

In view of the large evolutionary distance between the different antibody germline families within the same species, it is not surprising that the biophysical properties of the proteins derived from these sequences vary considerably. Ewert et al. (2003) systematically compared the biophysical properties of isolated human antibody variable domains representing the consensus sequences of the different germline families and of the single-chain Fv (scFv) fragments composed of these consensus domains. huVH3 was found to be the most stable of the human frameworks, followed by huVH1 and huVH5, whereas huVH2, huVH4 and particularly huVH7 showed very poor biophysical properties. huVH7 was not tested, as in the HuCAL® consensus framework design it was treated as a member of the huVH1 family (Knappik et al., 2000).

The stability of different antibody constructs containing a VH domain derived from the same germline family can vary widely, depending on the CDR-H3 sequence, germline-encoded V-sequence variability, somatic mutations, the nature of the VL domain and the degree of mutual stabilization of interacting domains (Wörn and Plückthun, 1999). Nonetheless, huVH3-like sequences and associated structural features of this family are highly overrepresented amongst the VH domains of exceptionally stable antibody constructs. This was found both for antibodies of human and non-human origin, and was especially visible in disulfide-free constructs...
conformation of the V_H domains impose constraints on the
served across all germlines, even between lambda and kappa
absence of a V_L domain (Hamers-Casterman
been constructed based on this type of framework (Pini
biophysical properties. Single framework libraries have also
constructs based on this type of framework (Pini et al., 1998; Söderlind et al., 2000; Röthlisberger et al., 2004; Fellouse et al., 2005; Fellouse et al., 2007).

From a structural standpoint, and ignoring CDR lengths and conformations, natural V_H frameworks can be grouped into three (human) or four (mouse) distinct structural subtypes (Saul and Poljak, 1993; Saul, 1994; Honegger and Plückthun, 2001b; Jung et al., 2001). The most striking difference between those subclasses lies in the conformation of the kink connecting strands A' and A'' in the framework 1 region of the domain (Fig. 1A–D). This conformational difference is caused by the fully buried side chain of a glutamate or glutamine in position H6 that has to assume a different conformation depending on its identity in order to satisfy the different hydrogen bonding requirements. The glutamate side chain can only serve as a hydrogen bond acceptor (Fig. 2A), while the glutamine side chain is both a hydrogen bond acceptor and a donor (Fig. 2B), which results in hydrophobic interactions between the main chain peptide NH and CO groups and to the side chain OH of Thr H143. The side-chain orientation enforced by these hydrogen bonds affects the main-chain conformation, as it does not allow the continuation of the A’-β-strand, but enforces a kink in the chain. The actual shape of the kink is further modulated by the flexibility of residues H7–H10 within the kink (Honegger and Plückthun, 2001b; Jung et al., 2001). Additional, more subtle, differences of the backbone conformation throughout the entire domain become apparent upon superposition of multiple structures: a slight difference in the relative orientation of the inner β-sheet (forming the heterodimer interface) and the outer β-sheet, which together form the β-sandwich structure of the immunoglobulin fold, can be noted, as well as slight differences in the take-off angle of CDR-H2 (Fig. 1E and F).

While the lower core of the V_L domains is fairly conserved across all germlines, even between lambda and kappa chains, the subtype-dependent variations in the backbone conformation of the V_H domains impose constraints on the packing of the hydrophobic residues in the core of the domain. This core packing, though highly conserved within any one of the V_H germline families, shows significant variations from one germline family to the next. Successfully grafting the complementary determining regions of an antibody to structurally divergent frameworks is only possible because the core can be divided into an upper core and a lower core (Fig. 3), bisected by a layer of highly conserved residues: the upper core consists mainly of buried CDR residues, but some additional residues from the N-terminal region and the outer loop pack against key CDR residues and usually have to be grafted along with the CDR residues in order to maintain the full antigen binding affinity. The dividing layer between upper and lower core consists mainly of the disulfide bond (Cys H23–Cys H106) and the core tryptophan (Trp H23). Glu/Gln H6, while playing a large part in the variability of the lower core does not directly affect the upper core: the conformational difference between Glu and Gln in that position consists mainly in a rotation around the long axis of the side chain that enforces a change in main-chain conformation with little change in the volume filled by the side chain (Fig. 1B). The lower core consists of the hydrophobic core residues H19, H21, H55, H56, H74, H78, H91, H93, H96, H102, H104 and H145 discussed in this paper. These residues co-vary with the antibody germline family. In addition, a cluster of charged residues (H45, H53, H77 H97, H99, H100) in the lower core of the V_H domain has been kept constant in all constructs. This clean division between upper and lower core breaks down in the area of CDR-H2. The boundaries of CDR-H2 are not clearly delineated, and buried CDR-residues pack against lower core residues that vary by subtype. In addition, the take-off angle and conformation of CDR-H2 differ between different germline families and structural subtypes. These differences are in part due to different CDR-H2 length and specific CDR-H2 sequence features, in part to the interactions between CDR-H2 and residues in the lower core.

In the design of a CDR graft for humanization and/or stabilization (Ewert et al., 2004) one often has to make a choice: on the one hand, a graft to the human framework most closely related to the framework of the CDR donor minimizes the probability of losing binding affinity, but may lead to a construct of equally insufficient stability as the donor. In contrast, grafting to the most stable of the human V_L and V_H frameworks reduces the risk of producing a construct with insufficient stability, but increases the risk of reducing antigen binding affinity. To further complicate matters, the most stable framework is not necessarily the one that gives the best production yields in a given expression system, as huV_H1 appears to be somewhat less aggregation-prone and is produced with higher yields than huV_H3 upon soluble periplasmic expression in Escherichia coli (Ewert et al., 2003).

The question thus arises whether there might be more appropriate acceptor frameworks for loop grafting than huV_H3. One such candidate has been identified from previous loop grafting experiments. The scFv Moc31 is derived from a murine monoclonal antibody with a muV2 light- and a muV_H9 heavy-chain variable domain and directed against the cell surface glycoprotein EpCAM (EGP2) (Myklebust et al., 1991), and it was converted to the humanized scFv 4D5MocA (Willuda et al., 1999) by standard CDR grafting to the huV_K and huV_H3 consensus frameworks. These domains had also been used in the humanization of antibody 4D5 (Eigenbrot et al., 1993). Taking into account the possibility that the framework subtype and associated core packing differences might affect the CDR-H2 take-off angle as suggested by Saul and Poljak (Saul and Poljak, 1993; Saul, 1994) and the difference in the relative orientation of the two β-sheets observed in the comparison
of available huVH3 and muVH9 structures (Fig. 1E and F), we constructed a further chimeric acceptor framework from huVH3 and muVH9 elements: it retains the subtype-determining framework 1 residues and the hydrophobic core residues of the murine CDR donor Moc31 in combination with the surface residues specified by the huVH3 consensus. This approach yielded the humanized scFv 4D5MocB (Willuda et al., 1999). This is summarized in Fig. 4.

Fears that the framework subtype might affect antigen binding, for example, by enforcing a different conformation on the CDRs, turned out to be unfounded in the case of the scFv Moc31: both variants, 4D5MocA and 4D5MocB, recognized...
the antigen with comparable affinity. However, while both constructs showed significantly improved functional stability and production yield compared to the parental murine scFv, the functional stability of 4D5MocB, the loop graft to the chimeric framework, was considerably higher than that of the classical CDR graft 4D5MocA, as shown by a significantly increased half-life at 37°C (Willuda et al., 1999). This additional stability was crucial, as it resulted in a significantly improved biodistribution of the radiolabeled scFv in tumor targeting experiments on mouse xenografts, and allowed the further development of the 4D5MocB scFv into the ETA-immunotoxin (Di Paolo et al., 2003) currently in phase III clinical trials for the treatment of head and neck cancer under the name of Proxinium™ and in phase II clinical trials for the treatment of bladder cancer under the name of Vicinium™ [Viventia Biotech Inc. (http://www.viventia.com)].

In this paper, we investigate the reasons for the improved functional stability of the chimeric VH framework of 4D5MocB compared to the huVH3 consensus framework used in 4D5MocA. This raises the more fundamental question whether there are better solutions to a stable, well-behaved framework than nature has found in huVH3. We therefore specifically wanted to find out whether the superior biophysical properties of this huVH3/muVH9 chimeric VH framework, compared to the consensus huVH3 framework, were due to superior intrinsic properties of this chimeric framework or to destabilizing interactions between the Moc31 CDRs and the huVH3 framework. To this end, we constructed three different chimeric VH frameworks, each combining the core and subtype-determining residues of a different subtype III VH domain with the surface residues and lower core charge cluster specified by the huVH3 consensus (Fig. 4).

The first of these frameworks reproduces the huVH3/muVH9 chimera of the 4D5MocB compared to the huVH3 consensus framework used in 4D5MocA. This raises the more fundamental question whether there are better solutions to a stable, well-behaved framework than nature has found in huVH3. We therefore specifically wanted to find out whether the superior biophysical properties of this huVH3/muVH9 chimeric VH framework, compared to the consensus huVH3 framework, were due to superior intrinsic properties of this chimeric framework or to destabilizing interactions between the Moc31 CDRs and the huVH3 framework. To this end, we constructed three different chimeric VH frameworks, each combining the core and subtype-determining residues of a different subtype III VH domain with the surface residues and lower core charge cluster specified by the huVH3 consensus (Fig. 4).

The first of these frameworks reproduces the huVH3/muVH9 chimera of the 4D5MocB framework used in 4D5MocA, the second combines the core residues of the huVH1 consensus with the huVH3 framework (huVH3-1) and the third investigates the combination of huVH5 with huVH3 (huVH3-5). In order to be able to directly compare these constructs to the human consensus constructs (Ewert et al., 2003), the CDR and upper core sequences were taken from the consensus huVH3 HuCAL® fragment and the different chimeric VH constructs were combined with the consensus huVk3 domain to produce scFv fragments (Table I).
Expression and purification

scFv fragments and isolated domains were expressed and purified in the same way. Thirty milliliters of dYT medium (16 g tryptone, 10 g yeast extract and 5 g NaCl per 1 l H_2O) containing 30 μg/ml chloramphenicol and 1.0% glucose were inoculated with a freshly transformed single colony of E. coli SB536 (Bass et al., 1996) and shaken overnight at 25°C. One liter of dYT medium (containing 30 μg/ml chloramphenicol and 50 mM K_2HPO_4) was inoculated with the pre-culture and incubated at 25°C in a 51 flask with baffles and shaken at 105 rpm. Expression was induced at an OD_550 of 1.0 by the addition of IPTG to a final concentration of 0.5 mM. Incubation at 25°C continued for 10 h; the cell density typically reached an OD_550 between 4 and 6.5, with cells starting to lyse upon longer incubation times. Cells were collected by centrifugation (8000 g for 15 min at 4°C), resuspended in 50 ml of 50 mM Tris–HCl (pH 7.5) containing 500 mM NaCl and disrupted by French press lysis. The crude extract was centrifuged (15 000 g for 60 min at 4°C) and the supernatant passed through a 0.2 μm filter. The proteins were purified using an immobilized metal ion affinity chromatography (IMAC) column as described below. Pooled fractions were dialyzed against 10 mM MES (pH 6.0) and loaded onto an HS cation exchange column. Elution from the cation exchange column was achieved with a gradient from 0 to 3 M sodium chloride. Pooled fractions were dialyzed against 50 mM sodium phosphate (pH 7.0) containing 100 mM NaCl. The protein concentrations were determined by measuring the absorption at OD_230 using the calculated extinction coefficient (Gill and von Hippel, 1989).

Assay for soluble expression and quantification of the scFv production yield

The above expression protocol was scaled down to 200 ml. All four scFv fragments (huVκ3-huVκ3, huVκ3-huVκ3, huVκ3-huVκ3-MocB, huVκ3-huVκ3-3) were purified in parallel using bench-top IMAC batch purification (Qiagen Ni-NTA Superflow). A series of washes were performed, starting with a high salt wash (10 column volumes (c.v.) of 50 mM sodium phosphate, 1 M NaCl), followed by a low salt phosphate buffer wash (15 c.v. of 50 mM sodium phosphate, 100 mM NaCl). A series of low concentration imidazole washes (6 c.v. each of 20, 40 and 60 mM imidazole in low salt phosphate buffer) were applied to eliminate weakly binding contaminants before finally eluting with 250 mM imidazole. All washes and elutions were done at pH 7.5. The proteins were dialyzed against phosphate buffer (50 mM phosphate, 100 mM NaCl, pH 7) and quantified as above, using absorbance at 280 nm.

Gel filtration chromatography

Using the Ettan system (Amersham Biosciences), samples of purified scFv fragments were analyzed on a Superdex-75 column (Pharmacia) equilibrated with 50 mM sodium phosphate (pH 7.0) containing 500 mM NaCl. The proteins were injected at a concentration of 5 μM in a volume of 50 μl, with a flow rate of 60 μl/min. Cytochrome c (12.4 kDa), carbonic anhydrase (29 kDa), and bovine serum albumin (66 kDa) were used as molecular mass standards. For characterization of the half-life at elevated temperatures, a 5 μM stock of each protein was incubated at the temperature indicated, and aliquots were analyzed by gel filtration after various time intervals.

Equilibrium denaturation/renaturation experiments

Fluorescence spectra were recorded at 20°C with a PTI Alpha Scan spectrofluorimeter (Photon Technologies, Inc.).
Protein/GdmCl mixtures (500 μl) containing a final protein concentration of 0.5 μM and denaturant concentrations ranging from 0 to 5 M GdmCl were prepared from freshly purified protein and a 8 M GdmCl stock solution (in 50 mM sodium phosphate, pH 7.0 containing 100 mM NaCl). Each final concentration of GdmCl was determined by measuring the refractive index. The samples were incubated overnight at 20°C and the fluorescence emission spectra were then recorded from 320 to 370 nm with an excitation wavelength of 280 nm. Slit widths of 2 nm were used both for excitation and emission. The emission maximum was plotted as a function of GdmCl concentration. Apparent \(k_{f} \) and \(k_{b} \) values were obtained by applying a standard two-state fit of the wavelength of the emission maximum as a function of denaturant concentration (Creighton, 1997; Monsellier and Bedouelle, 2005) (eq. 1):

\[
\lambda_{\text{max}}(\text{obs}) = \frac{(\lambda_{\text{max}}N + m_N \cdot [D]) + (\lambda_{\text{max}}U + m_U \cdot [D]) \cdot e^{-[\Delta G_{\text{H2O}} - m \cdot [D]]/RT}}{1 + e^{-[\Delta G_{\text{H2O}} - m \cdot [D]]/RT}}
\]

(eq.1)

Here \(\lambda_{\text{max}}(\text{obs}) \) is the observed fluorescence maximum at a given denaturant concentration \([D]\). \(\lambda_{\text{max}}N \) and \(m_N \) are intercept and slope of the pre-transition baseline, and \(\lambda_{\text{max}}U \) and \(m_U \) the same for the post-transition baseline, \(\Delta G_{\text{H2O}} \) the free energy of unfolding at zero denaturant and \(m \) the dependence of free energy of unfolding on denaturant concentration. Since there is no strict proportionality between the shift of the spectral maximum and the fraction of folded and unfolded molecules, Monsellier and Bedouelle (2005) proposed a method to correct for the effects of the different quantum yields of the native and the denatured state. For the scFv fragments analyzed in this study, this correction factor turned out to be negligible (Supplementary data are available at PEDS online, Figure S2–S7 and Tables ST1–ST4).

Kinetic denaturation experiments

Protein/GdmCl mixtures (500 μl) contained a final protein concentration of 1 μM. Denaturant concentrations ranging from 3.1 to 6 M GdmCl were prepared from a GdmCl stock solution (8 M, in 50 mM sodium phosphate, pH 7.0 and 100 mM NaCl). The GdmCl concentration in each sample was empirically determined by using the refractive index. The GdmCl buffers and protein samples were pre-incubated (in separate tubes) for at least 45 min at 20°C. After manual mixing of the two solutions (mixing time ca. 5 s), the fluorescence emission at 330 nm as a function of excitation at 280 nm was recorded with a PTI Alpha Scan spectrofluorimeter (Photon Technologies, Inc.) until the protein unfolding reaction reached equilibrium. Slit widths were 2 nm for both excitation and emission.

Results

To reconcile the observations that, on the one hand, huV\(_{H}\)3 is one of the most frequently used frameworks and gives rise to antibodies of usually good biophysical properties, yet on the other hand, that the huV\(_{H}\)3-muV\(_{H}\)9 chimeric framework performed much better than huV\(_{H}\)3 with a particular set of CDRs (Willuda et al., 1999), we set out to systematically investigate further hybrid frameworks. The observed superior stability might be due to a higher intrinsic stability of the chimeric V\(_{H}\) framework or to the removal of destabilizing interactions between the huV\(_{H}\)3 core residues and the Moc31-derived CDRs in the chimeric V\(_{H}\) framework. We therefore reconstructed this chimeric framework in combination with a different set of CDRs derived from the huV\(_{H}\)3 germline family consensus (CDR-H1 and CDR-H2) and from the antibody 4D5 hu4D5-8 (CDR-H3) (Eigenbrot et al., 1993). In addition, we tested whether this stability gain can also be obtained using core residues derived from the human consensus domains that belong to the same structural subtype as muV\(_{H}\)9, namely huV\(_{H}\)1 and huV\(_{H}\)5.

We therefore compared the consensus huV\(_{H}\)3 to three different chimeric constructs, huV\(_{H}\)3-MocB, huV\(_{H}\)3.1-1, and huV\(_{H}\)3.5, in which the framework core residues of huV\(_{H}\)3 had been replaced by different residue combinations (Figs. 4 and 5). In all three constructs, the kink connecting strands A and B of the subtype II determining residues Glu-H6 and Gly-H10 of huV\(_{H}\)3 were replaced by the subtype III determining residues Glu-H6 and Ala-H10, as present in huV\(_{H}\)1 and huV\(_{H}\)5. In muV\(_{H}\)9, H10 is a Pro. This Pro, however, does not influence the kink conformation. Therefore, it was replaced by Ala in huV\(_{H}\)3-MocB. Residue H7 was kept as Ser and H9 as Gly in all constructs. The two substitutions in positions H6 and H10 are sufficient to alter the conformation of the framework I kink from type II to type III, but out-of-context changes of the kink conformation usually lead to a destabilization of the domain due to unfavorable interactions with the domain core (Jung et al., 2001).

Therefore, the lower core of the huV\(_{H}\)3 framework, composed of residues H19, H21, H55, H56, H74, H78, H91, H93, H96, H102, H104 and H145 [shown schematically in Fig. 4, as space filling (CPK) representation in Fig. 3 and indicated by open triangles in the sequence alignment in Fig. 5], was replaced by the residue combinations characteristic for each of the three different type III V\(_{H}\) domains: in huV\(_{H}\)3-MocB, the lower core residues were replaced by those of the muV\(_{H}\)9 domain, reproducing the hybrid framework of the humanized antibody 4DSMocB (Willuda et al., 1999), but in the context of the heavy chain CDRs of the huV\(_{H}\)3 consensus domain. This construct differs only by a single amino acid (H21, Ile in muV\(_{H}\)9, Val in huV\(_{H}\)7) from a hypothetical core lower graft using the core of the human huV\(_{H}\)7 consensus and could therefore alternatively be called huV\(_{H}\)3.7(\(\phi_{21I}\)). Note that huV\(_{H}\)7 can be treated as a member of the huV\(_{H}\)1 family, as was done in HuCAL (Knappik et al., 2000). In huV\(_{H}\)3.1, the lower core residues were derived from the consensus of the human V\(_{H}\)1 germine family, in huV\(_{H}\)3.5 by those of the huV\(_{H}\)5 consensus framework.

As some of the 12 hydrophobic lower core residues are conserved between huV\(_{H}\)3 and the type III V\(_{H}\) domain serving as core donor, there are less than 14 sequence differences between huV\(_{H}\)3 and the three constructs: huV\(_{H}\)3 and huV\(_{H}\)3-MocB differ by 9 residues, huV\(_{H}\)3 and huV\(_{H}\)3.1 by 10 residues and huV\(_{H}\)3 and huV\(_{H}\)3.5 by 8 residues. Five of these substitutions are identical in all three hybrid constructs: the subtype-determining residues H6 and H10, changing
Fig. 5. Sequence alignment. (A) Sequences of the V_H domains involved in the Moc31/huV_H3 CDR-grafts: acceptor framework 4D5, CDR donor Moc31, classical CDR-graft 4D5MocA and CDR-graft 4D5MocB retaining the Moc31 hydrophobic core residues. (B) Lower core graft from the V_H domain of Moc31 to HuCAL huV_H3: acceptor framework HuCAL huV_H3, core donor Moc31, core graft huV_H3.MocB. (C) Lower core graft from the V_H domain of HuCAL huV_H1 to HuCAL huV_H3: acceptor framework HuCAL huV_H3, core donor HuCAL huV_H1, core graft huV_H3.1. (D) Lower core graft from the V_H domain of HuCAL huV_H5 to HuCAL huV_H3: acceptor framework HuCAL huV_H3, core donor HuCAL huV_H5, core graft huV_H3.5. In each group of sequences, those residues that are identical in all sequences are shown in white on a dark blue background, residues carrying the specific sequence of the acceptor framework are shown in black on a cyan background and residues carrying the specific sequence of the CDR- or core donor are shown in black on magenta. The grafted core residues are highlighted by an orange background. In the header of the alignment, the residue numbers according to the AHo (Honegger and Plückthun, 2001a) and the Kabat (Kabat et al., 1991) numbering scheme are indicated. Color codes show the average solvent exposure of the residues in an isolated V_H domain relative to the same amino acid in the context of an extended poly-Ala chain (yellow, >10%; yellow–green, 10–25%; green, 25–50%; dark green, 50–75%; green–blue 75–100%; blue, >100%) and the average relative reduction in solvent accessible surface upon complex formation between antibody and antigen, between V_L and V_H domain and between variable and constant domains (red, >80%; red–orange, 60–80%; orange, 40–60%; yellow–orange, 20–40%; yellow, >0–20%; white, 0%).
the kink sequence signature of residues H6–H10 from Glu-Ser-Gly-Gly to Gln-Ser-Gly-Ala, the substitutions Val-H55 to Met and Ser-H56 to Gly, affecting the β-bulge at the start of CDR-H2 and Val-H74 to Phe, a residue formally located within CDR-H2, but structurally part of the lower core (Figs 3 and 5). All CDR and upper core residues, surface residues, semi-exposed Val-H13 and the charge cluster comprising the buried salt bridge between Arg-H77 and Asp-H72 and Lys H75, Arg H97 and Glu H99 were retained from huVH3 as embodied in the HuCAL VH3 consensus domain.

Expression yields of scFv fragments

Ideally, one would directly compare the properties of the isolated VH domains. However, these isolated domains are highly aggregation-prone due to the hydrophobic surface, which forms the VH/VL interface in a scFv but is solvent exposed in the isolated domain. Since huVH3-1 and huVH3-5 could not be produced as isolated domains, and preparations of huVH3-MocB always contained a sizable fraction of aggregates, huVH3 and the three core grafts were each combined with the most stable of the human VL consensus domains, huVK3, to form an scFv in VH-(Gly4Ser)4-VL orientation with a C-terminal His-tag, and inserted into the vector pAK400 (Kreber et al., 1997) for periplasmic expression in E. coli. The consensus scFv fragment huVK3-huVH3 and the core grafts huVK3-huVH3-MocB, huVK3-huVH3-1, and huVK3-huVH3-5 and a reconstructed huVK3-huVH3 in the same orientation and vector were purified under non-denaturing conditions after expression in soluble form in the periplasm.

With a soluble expression yield of 10–20 mg of pure protein from a 1 l culture normalized to an OD600 nm of 10 (in short, mg/l-OD10), the yields of these four constructs were significantly higher than the yields obtained for the original Moc31 scFv [0.2 mg/l-OD10, which can be increased to 0.6 mg/l-OD10 by coexpression of the chaperone Skp (Bothmann and Pliickthun, 1998)]. This can be compared with the control scFv hu4D5 (1–2 mg/l-OD10), and the humanized Moc31 scFv fragments 4D5MocA (0.4 mg/l-OD10) and 4D5MocB (1 mg/l-OD10) (Willuda et al., 1999). The expression yields of the three core-grafted constructs huVK3-huVH3-1 (16.8 mg/l-OD10), huVK3-huVH3-MocB (15.8 mg/l-OD10), and huVK3-huVH3-5 (11.6 mg/l-OD10) were slightly lower than that of the full consensus huVK3-huVH3 (20.9 mg/l-OD10). This yield was well above the 6.5 mg/l-OD10 reported (and confirmed here) for the huVH3-huVK3 construct in the pMorphX7 vector (Ewert et al., 2003).

Side-by-side comparison of the two consensus constructs confirmed that the VH-linker-VH scFv in pAK400 (Kreber et al., 1997) reproducibly gave higher yields when normalized to OD than VH-linker-VH scFv composed of the same VH and VL domains in pMorphX7 (Knappik et al., 2000) (21 mg/l-OD10 for huVH3-huVK3 in pAK400 vs. 5.8 mg/l-OD10 for huVH3-huVK3 in pMorphX7). However, cells containing the same scFv construct in the vector pMorphX7 grew to up to two times higher density in standard shaking flask culture without starting to lyse than cells containing the pAK400 vector, making the net yield per liter of culture more similar between the vectors.

In VH-linker-VL orientation and the pMorphX7 vector, the consensus constructs of the core donors huVH1a-huVK3 (11.1 mg/l-OD10) and huVH1b-huVK3 (12.4 mg/l-OD10) yielded twice as much protein as huVH3-huVK3 (6.5 mg/l-OD10) in the same vector, while huVH5-huVK3 (6.5 mg/l-OD10) was produced with approximately the same yield as huVH3-huVK3 (Ewert et al., 2003).

Functional stability of the scFv fragments

An scFv intended for use in biological assays and ultimately in therapeutic application has to be stable and remain functional at physiological temperatures and at high concentrations. The time course of aggregation upon incubation in buffer at 37°C or of loss of antigen binding activity upon incubation in serum at that temperature is frequently used as a measure to assess the ability of an scFv to withstand thermal stress under physiological conditions. Since the constructs analyzed in this study do not recognize a specific antigen, we could only assess the loss of soluble protein due to aggregation.

Gel filtration analysis of the freshly purified scFv fragments showed all four constructs to elute at the expected size (27 kDa) as monomers, with only a small shoulder hinting at the presence of a very minor fraction of dimers for huVH3-huVH3-MocB and huVK3-huVH3-5 (Fig. 6A). Thus, the different domain cores introduced into the VH framework fragment did not result in a significant increase of dimer formation. Incubation at temperatures above the respective aggregation temperature resulted in the irreversible precipitation of the protein. The consensus scFv fragment huVH3-huVH3 and the core grafts huVK3-huVH3-MocB, huVK3-huVH3-1 and huVK3-huVH3-5 all remained fully soluble and monomeric for more than 92 h at 37°C and for more than 48 h at 50°C. Interestingly, the dimer shoulder observed in freshly prepared material disappeared with concomitant increase of the monomer peak height upon incubation for 24 h at 50°C, presumably indicating the re-equilibration of dimer to monomer (Fig. 6B). This is consistent with previous observations of monomer being the thermodynamically preferred form at low to moderate concentrations (Arndt et al., 1998). After 24 h at 65°C, 44% of the huVH3-huVH3 and 34% of huVH3-huVH3-MocB were recovered in the monomeric fraction, while less than 5% of huVH3-huVH3-1 and huVH3-huVH3-5 were recovered in the monomeric fraction. Thus, the thermal stability appears to be highest for huVH3-huVH3, closely followed by huVH3-huVH3-MocB, while huVK3-huVH3-1 and huVK3-huVH3-5 were significantly less resistant to thermal aggregation. In contrast, at least 95% of the murine Moc31 scFv had aggregated within 30 min at 37°C, the loop-graft 4D5MocA showed a half-life of around 10 h at 37°C and only the core-engineered 4D5MocB showed no measurable aggregation or precipitation after 20 h at 37°C (Willuda et al., 1999).

Equilibrium unfolding of the scFv fragments in guanidinium chloride

Since scFv fragments aggregate and precipitate upon thermal denaturation, the relative equilibrium thermodynamic stabilities of the different constructs were instead assessed by chemical denaturation, observing the change of the tryptophan fluorescence emission spectrum as a function of guanidinium concentration (Eftink, 1994). The equilibrium denaturation was entirely reversible, as unfolding and
refolding curves, starting from the completely folded or unfolded protein, respectively, were superimposable (Supplementary data are available at PEDS online, Figure S4). The net change in fluorescence quantum yield upon denaturation was small. The fluorescence intensity data showed large errors between closely spaced data points, presumably due to light scattering by aggregated species at intermediate denaturant concentrations.

We therefore resorted to an analysis of the spectral shift of the emission maximum (wavelength of the emission maximum or center of spectral mass). This has been shown to give more robust values for scFv proteins, as this parameter is not affected by light scattering (Wörn and Plückthun, 1999) of soluble aggregates that may form at intermediate denaturant concentrations. The $[\text{GdmCl}]_{50}$ values should therefore be interpreted as the midpoint of the observable spectral shift upon unfolding. If the scFv fragment does not follow a two-state transition, this should not be interpreted as the denaturant concentration at which 50% of the scFv is fully unfolded. Deviations from two-state behavior are frequent for scFv fragments [Supplementary data are available at PEDS online, Figure S6 and (Wörn and Plückthun, 1999; Röthlisberger et al., 2005)].

Comparison of the denaturation curves of the different constructs (Fig. 7) shows that the denaturation curves of the two reference scFv with opposite domain orientation, huVκ3-huVλ3 and huVλ3-huVκ3, do not differ significantly from each other and agree with the value determined previously (Ewert et al., 2003) for huVλ3-huVκ3. The reference curves for huVλ1-huVκ3 and huVλ5-huVκ3 were, therefore, also taken from previously described experiments (Ewert et al., 2003). Vκ3-huVλ3 ([GdmCl]$_{50}$=2.6 M) and huVκ3-huVλ3-MocB ([GdmCl]$_{50}$=2.7 M) show very similar denaturation midpoints (Fig. 7A), although, reflected in a steeper transition of the equilibrium folding/unfolding curve of huVκ3-huVλ3-MocB (higher apparent cooperativity), this construct starts to unfold at a somewhat higher denaturant concentration than the reference construct. In contrast, huVκ3-huVλ3-5 unfolds with a [GdmCl]$_{50}$ of 2.4 M, intermediate between that of huVκ3-huVλ3 (2.6 M) and that of the core donor huVλ5-huVκ3 (2.2 M) (Fig. 7C), and huVκ3-huVλ3-5 (2.2 M) unfolds at lower denaturant concentration than either huVκ3-huVλ3 or huVκ3-huVλ3-1 (2.4 M) (Fig. 7B).

Upon denaturation, the wavelength of the fluorescence maximum of the scFv is shifted by $\Delta \lambda_{\text{max}} = 12$ nm. The use of this measure of unfolding in the determination of ΔG needs special caution. Differences in the shape of the spectrum and in the fluorescence quantum yield of the native and the denatured state can lead to deviation from a strict proportionality between the spectral shift and the fraction of molecules that have undergone the transition from the native to unfolded state (Monsellier and Bedouelle, 2005). Although Monsellier and Bedouelle suggest a corrective term involving the curvature of the spectra at their λ_{max} that would allow to correct for the non-linear dependence of fluorescence emission maximum on the fraction of molecules that are unfolded (Monsellier and Bedouelle, 2005), we hesitate to extrapolate to $\Delta G(\text{H}_2\text{O})$ from these curves, as we have reason to believe that a two-state model of unfolding does not adequately describe the unfolding transitions of all of our scFv.

The data showed a good fit to a two-state model (Creighton, 1997) (cf. Eq. 1), with r-values of 0.999 or better. However, while the m-value of 7.4 kcal/l/mol2 for huVκ3-huVλ3-MocB approaches the value that would be expected according to Myers et al. (1995) for a protein of 28 kDa with two disulfide bonds such as an scFv, an m-value of 2.7 kcal/l/mol2, as observed for huVκ3-huVλ3, would be expected for a protein of only ~14 kDa with two disulfide bonds. The four scFv investigated in this study differ from each other only by a small number of rather conservative point mutation.
The m-value can differ from the one expected for the molecular size if there is a hidden intermediate (i.e. it is not a two-state system). However, we first consider the possibility to explain the data within a two-state state approximation.

The m-value (cooperativity of unfolding) in a two-state system is related to the change in solvent accessible surface area (ΔASA) upon denaturation (Myers et al., 1995). To explain large differences in m-value between closely related mutants, one has to postulate either differences in the strength of the interaction between the residues exposed upon unfolding and the denaturant (Tanford, 1970), which is unlikely for very closely related proteins, or that some mutants are not fully unfolded by the denaturant, which would result in different ΔASA. Our data would require a change in ΔASA by a factor 2 to 3 between the mutants.

However, we find that an incomplete denaturation of some mutants would not be consistent with our measurements: the slope of the post-transition baseline is very small and very similar for the different mutants, the emission maxima and the shape of the spectra of the unfolded scFvs are very similar for the four constructs (Supplementary data are available at PEDS online, Figures S2 and S3) and to what is expected for exposed Trp, arguing against a significant difference in the amount of residual structure in the unfolded state.

A very different m-value, taken literally, would mean to extrapolate from the denaturation midpoint to zero denaturant with a very different slope. The values so obtained are, however, clearly not consistent with the functional stabilities that we could measure directly in native buffer. Using a two-state fit with these different m-values, we would extrapolate for huVx3-huV3 an apparent thermodynamic stability $\Delta G(\text{H}_2\text{O})$ of only about 7 kcal/mol compared to around 17 kcal/mol for huVx3-huV3-MocB, 11 kcal/mol for huVx3-huV3-1 and 13 kcal/mol for huVx3-huV3-5 (Supplementary data are available at PEDS online, Tables ST–ST3), while thermal aggregation experiments (see above) and kinetic denaturation experiments (see next section) suggest huVx3-huV3 to be at least as stable as huVx3-huV3-MocB. We thus do not believe that the scFv mutants are adequately described by a two-state approximation, and consequently do not believe that $\Delta G(\text{H}_2\text{O})$ so obtained would be valid.

Based on previous studies (Wörn and Plückthun, 1999; Wörn et al., 2000; Jäger et al., 2001; Röthlisberger et al., 2005), we suggest that true two-state unfolding behavior of an scFv is the exception rather than the rule, and is predominantly seen in scFv composed of domains that have low intrinsic stability but are stabilized to a significant extent in the folded and unfolded scFv and the influence of corrections (Monsellier and Bedouelle, 2005, 2006) aimed at compensating for the spectral differences between the two states are provided in the Supplementary Material available at PEDS online.

The plots of the fitted $\Delta G(\text{GdmCl})$ vs. denaturant concentration for those points whose relative spectral shift lay between 0.05 and 0.95. However, since we find evidence that the two-state assumption is not fulfilled in this system (see text), we do not report the fitted ΔG values. Plots of the raw ΔG vs. [GdmCl] data for the equilibrium unfolding and refolding reaction, the apparent thermodynamic parameters derived from the fit, the spectra of the folded and unfolded scFv and the influence of corrections (Monsellier and Bedouelle, 2005, 2006) aimed at compensating for the spectral differences between the two states are provided in the Supplementary Material available at PEDS online.
preclude to use such different \(m \)-values to extrapolate to zero denaturant to calculate \(\Delta G(H_2O) \) in a comparison of mutants. The relative stability at medium denaturant concentration, indicated by the [GdmCl]_{50} values, may thus at least qualitatively describe the relative stability of the mutants at zero denaturant. This only assumes that a similar extrapolation slope is used for all mutants.

Unfolding kinetics

The four scFv were mixed with different concentrations of GdmCl and the unfolding reaction was followed by recording the change in fluorescence intensity at 330 nm. Figure 8A compares the unfolding traces of the scFv fragments at a guanidinium concentration of 3.2 M, a concentration at which at equilibrium even the most stable construct was >95% denatured. The shape of the trace was different for the four constructs: huV\(_k\)3-huV\(_H\)3 showed a monotonous, slow drop in fluorescence intensity, huV\(_k\)3-huV\(_H\)3-MocB an initial fast drop followed by a slow increase and for huV\(_k\)3-huV\(_H\)3-1 and huV\(_k\)3-huV\(_H\)3-5, this initial drop was so fast that this first phase was essentially completed within the dead-time of manual mixing (5 s). The rate of the slow phase of fluorescence increase was not only the same for the three chimeric constructs, but was also identical to the unfolding rate of the isolated huV\(_k\)3 domain (Fig. 8B), huV\(_k\)3-huV\(_H\)3, huV\(_k\)3-huV\(_H\)3-MocB and huV\(_k\)3-huV\(_H\)3-1 showed similar specific fluorescence intensities in the native state and also tended towards the same fluorescence intensity in the denatured state. The specific fluorescence of huV\(_k\)3-huV\(_H\)3-5 was higher than that of the other three constructs due to an additional tryptophan residue in the huV\(_H\)5-derived core (Trp-H93).

Comparison of the spectra of native and denatured isolated huV\(_k\)3 and huV\(_H\)3 domain and of the scFv composed of these domains suggests that the conserved core Trp L43 and Trp H43 are highly quenched in the native domain. Thus, the fluorescence intensity increases as isolated huV\(_k\)3 and huV\(_H\)3 domains unfold (Jäger et al., 2001). The specific fluorescence of the scFv is higher than the sum of the fluorescence of the two isolated domains. Therefore, the contribution of the three V\(_H\) tryptophan residues buried in the interface between the V\(_L\) and the V\(_H\) domain, Trp H54 (conserved), H109 (CDR-H3) and H139 (conserved) is lower when these residues are solvent exposed (isolated domains) than when they are buried in the domain interface (scFv) (Location of the tryptophans in the scFv structure is shown in Supplementary data are available at PEDS online, Figures S1). Upon domain dissociation, not only does the fluorescence quantum yield of the interface Trp residues decrease, but also the fluorescence maximum shifts from lower wavelength to \(\sim 350 \) nm, the typical value for exposed tryptophan residues (Schmid, 2005). Both effects together explain the shift of the maximum of the huV\(_k\)3-V\(_H\)3 scFv from 338.4 nm for the native molecule to 349.2 nm for the fully denatured scFv in 5 M GdmCl, and the decrease of fluorescence intensity at 330 nm upon full or partially denaturation. The fast initial decrease of fluorescence intensity in the unfolding of the isolated huV\(_k\)3-huV\(_H\)3-MocB, huV\(_k\)3-huV\(_H\)3-1 and huV\(_k\)3-huV\(_H\)3-5 is, therefore, governed by the exposure of the interface tryptophans as a consequence of the unfolding of the V\(_H\) domains, while the subsequent increase in fluorescence intensity represents the unquenching of Trp L43 as the V\(_L\) domain unfolds. In V\(_H\), the analogous unquenching of Trp H43 is masked by the fluorescence increase of Trp H54, Trp H109 and Trp H139 upon denaturation in the context of the scFv fragment.

In summary, the thermal stability and midpoint of chemical denaturation were very similar for the huV\(_k\)3-V\(_H\)3 and

![Fig. 8. Unfolding kinetics. (A) Unfolding kinetics of the scFv huV\(_k\)3-huV\(_H\)3, huV\(_k\)3-huV\(_H\)3-MocB, huV\(_k\)3-huV\(_H\)3-1 and huV\(_k\)3-huV\(_H\)3-5 in 3.2 M GdmCl. (B) Unfolding kinetics of the scFv huV\(_k\)3-huV\(_H\)3-MocB and huV\(_k\)3-huV\(_H\)3-1 and of the isolated huV\(_k\)3 domain in 3.5 M GdmCl. After manual mixing with a dead time of \(\sim 5 \) s, the unfolding was observed as a function of time by recording the change in fluorescence intensity at 330 nm with an excitation wavelength of 280 nm.](image)
Discussion

When designing a CDR graft in order to humanize and/or to stabilize an antibody, one frequently has the choice to either graft to the human consensus framework most closely related to that of the CDR donor, or to the most stable of the human frameworks, the huV\textsubscript{H3} framework. While the subtype II containing huV\textsubscript{H3} is the largest human germline family, the murine antibody repertoire is dominated by frameworks of structural subtypes III and IV, due to the large number of muV\textsubscript{H1} germlines. Thus, in order to design the optimal CDR graft for a given murine sequence, the consequences of grafting to a structurally divergent framework have to be taken into account.

In previous studies (Willuda et al., 1999), two CDR-grafts from the muV\textsubscript{H9} (type III) V\textsubscript{H} domain of antibody Moc31 were compared. They were either to the consensus huV\textsubscript{H3} domain (type II) framework or to a chimeric framework that was derived from huV\textsubscript{H3}, but whose structural subtype had been adapted to that of the CDR donor by retaining the subtype determining residues H6 and H10 and the hydrophobic core residues of the CDR donor (Fig. 4A–D). Although both grafts were significantly more stable than the parental murine scFv, the graft to a V\textsubscript{H} framework that retained the structural subtype of the CDR donor (4D5MocB), and therefore more closely resembled the parental antibody, was more stable than the graft to the consensus huV\textsubscript{H3} framework (4D5MocA). Two different hypotheses can be formulated that might account for the observed differences in stability: (i) either the intrinsic stability of the chimeric framework of 4D5MocB is higher than that of the huV\textsubscript{H3} consensus framework of 4D5MocA, or (ii) destabilizing interactions between the muV\textsubscript{H9}-derived CDRs and the consensus huV\textsubscript{H3} domain core might have reduced the stability of 4D5MocA. Hypothesis (i) would predict that the stability of grafts to the chimeric framework should be higher than that of grafts to the consensus huV\textsubscript{H3} domain, independent of the origin of the CDRs, while hypothesis (ii) would predict that the chimeric framework would only be superior if combined with CDRs derived from muV\textsubscript{H9}, and possibly other type III V\textsubscript{H} domains. In contrast, in combination with huV\textsubscript{H3}-derived CDRs and CDRs derived from other type II V\textsubscript{H} domains, the consensus huV\textsubscript{H3} domain would give rise to superior molecules. Either result would have implications beyond the system tested—if hypothesis (i) were correct, we would have a generally applicable way to improve the stability of problematic CDR grafts, while if hypothesis (ii) were correct, it would mean that the structural subtype of CDR donor and acceptor framework have to be matched when designing a CDR graft in order to produce a graft with the best possible biophysical properties.

To test the two hypotheses, we put both the consensus huV\textsubscript{H3} framework and the huV\textsubscript{H3}-muV\textsubscript{H9} chimeric framework into a different context by combining them with huV\textsubscript{H3}-consensus-derived CDR-H1 and -H2, a CDR-H3 taken from hu4D5-8, and providing the scFv with a huV\textsubscript{H3} consensus domain. In this context, hypothesis (i) would predict the scFv containing the chimeric V\textsubscript{H} framework to be more stable, while hypothesis (ii) would predict the scFv containing the consensus huV\textsubscript{H3} framework to be more stable. To test whether it was sufficient to convert the subtype of the V\textsubscript{H}-framework from type II to type III, or whether the specific combination of hydrophobic core residues found in muV\textsubscript{H9} was needed, we added two more chimeric V\textsubscript{H} domains to the analysis. In one of these, the core residues were taken from the huV\textsubscript{H1} consensus, in the second, from the huV\textsubscript{H5} consensus. An added incentive for testing the latter two constructs lay in the observation that scFv huV\textsubscript{H1}-huV\textsubscript{H3} gave higher and huV\textsubscript{H5}-huV\textsubscript{H3} similar yields as the more stable huV\textsubscript{H3}-huV\textsubscript{H3} upon periplasmic expression in E. coli (Ewert et al., 2004).

Thus, we compared the biophysical properties of four different scFv fragments which differed only in the subtype-determining residues and the hydrophobic residues of the lower core (Fig. 4E–H). In scFv huV\textsubscript{H3}-huV\textsubscript{H3}, all residues are derived from the consensus sequence of the corresponding human germline family, with the exception of CDR-L3 and CDR-H3, which were taken from hu4D5-8. In the other three scFv, glutamate H6 was replaced by glutamine and Gly H10 by Ala. The three constructs differed from each other in the combination of hydrophobic residues that make up the hydrophobic core of the V\textsubscript{H}-framework: in huV\textsubscript{H3}-huV\textsubscript{H3}-MocB these were derived from muV\textsubscript{H9} (Moc31), in huV\textsubscript{H3}-V\textsubscript{H3}-1 from huV\textsubscript{H1} and in huV\textsubscript{H3}-huV\textsubscript{H3}-5 from huV\textsubscript{H5}.

Both hypotheses presume the existence of structural differences between V\textsubscript{H} domains derived from the muV\textsubscript{H9} germ-line family, and the CDR acceptor in the classical CDR graft, the huV\textsubscript{H3} consensus domain. While we do not have an experimental structure of the exact V\textsubscript{H} domains investigated in the present study, the analysis of diagnostic sequence features allows us to identify muV\textsubscript{H9} as a type III structure, and huV\textsubscript{H3} as a type II structure (Fig. 1A–D). In addition, we can compare all muV\textsubscript{H9}-derived V\textsubscript{H} structures in the PDB (Berman et al., 2000) to all huV\textsubscript{H3}-derived structures, and observe systematic structural differences between the two groups (Fig. 1E and F).

Structural comparisons of the different domain subtypes suggest that changes in the framework I kink conformation may in turn lead to clashes or under-packing in the adjacent hydrophobic core. As a result, the combination of residues that pack the hydrophobic core of the V\textsubscript{H} domain is not conserved between the subtypes. On the other side of the domain, CDR-H2 residues pack into the domain core. In particular, residue H74 (Kabat H64) is highly divergent between different V\textsubscript{H} subtypes and may not pack well with similarly divergent residues in the domain core, either leading to steric strain or to an adaptation of the CDR-H2 conformation (Fig. 3).
domains, and type II VH domains are overrepresented highly conserved in the germlines giving rise to subtype II stability of the huV H3 consensus domain. If the relief of introduced sufficient steric strain to destabilize 4D5MocA in conformation and interfere with antigen binding, may have information of the muV H9-derived CDRs and the huV H3-derived et al 4D5MocB were responsible for the superior stability of this construct, as stated by the second hypothesis, there would be no intrinsic advantage of the hybrid framework as constructed in 4D5MocB over huVH3; rather the huVH3 was under unusual strain with the particular set of CDRs present in the construct.

In contrast, the first hypothesis seeks the reason for the different stabilities in the domain frameworks themselves, at the source of their structural divergence: the fully buried glutamate side chain in position H6 that is a hallmark of type II frameworks is not part of a salt bridge or charge cluster, it only interacts with main-chain NH groups and the side-chain OH of Thr H143 to satisfy its hydrogen bonding requirements (Fig. 2). Normally, the burial of an uncompensated charge in the domain core is energetically highly unfavorable, and indeed the out-of-context replacement of glutamate H6 in a type III VH domain by a glutamate will severely destabilizes the domain (Kipriyanov et al., 1997; de Haard et al., 1998; Jung et al., 2001). However, this glutamate is highly conserved in the germlines giving rise to subtype II domains, and type II VH domains are overrepresented amongst the most stable VH domains, indicating that the replacement of the Glu by an uncharged residue is evolutionally disfavored. One might think that in designing the hybrid framework 4D5MocB, we may have found a successful combination of core and subtype-determining residues,accommodating a Gln in H6 in combination with stabilizing features typical of the huVH3 consensus. If this were the case, CDR-grafts to the hybrid framework should be more stable than grafts of the same CDRs to the huVH3 consensus framework, independent of the structural subtype of the CDR donor.

As the data in the results section shows, thermal denaturation, midpoints of equilibrium chemical denaturation and denaturation kinetics suggest that the functional stability of the four VH constructs can be ranked as huVH3>MocB>huVH3-MocB>huVH3-5≈huVH3-1. This ranking does not agree with the ΔG(H2O) values extrapolated from a two-state fit, which would assign a very low thermodynamic stability to the scFv containing the huVH3 domain. However, the low cooperativity of the unfolding transition of the scFv containing the huVH3 domain is not compatible with a two-state transition, but hints at the presence of a hidden intermediate. We have thus concluded that the system is not behaving like a two-state system, and an extrapolation with very different slopes to obtain ΔG(H2O) for the different mutants is not justified.

The high stability and production yield of the four constructs containing the huVH3 consensus CDRs in comparison to both 4D5MocA and 4D5MocB, and the reduced stability of the three core-grafted constructs compared to the consensus huVH3, all point towards the hypothesis of an improved fit between CDRs and framework. This explains the increased stability of 4D5MocB compared to 4D5MocA and of huVH3-huVH3 compared to the three chimeric constructs tested in this study. The data are not compatible with an increased intrinsic stability of the chimeric frameworks. This demonstrates that a CDR graft to a structurally divergent framework not only carries an increased risk of losing affinity, but may also lead to decreased stability. Furthermore, these findings of a context-dependence of the optimal framework illustrate another reason why nature has chosen to build the immune system on a set of frameworks, rather than a single one, to support the different CDRs.

Acknowledgements
A.H. and A.P. conceived the project, A.H. designed and modeled the mutants and lead the data evaluation, all authors designed experiments, A.D.M. performed the experiments, and all authors evaluated data and wrote the manuscript. We thank Hugues Bedouelle for providing the Kaleidagraph macros used to evaluate the equilibrium unfolding data.

Funding
This work was supported by the Schweizerischer Nationalfond, grant 3100AO-113720.

References

Received October 3, 2008; revised November 26, 2008; accepted November 27, 2008

Edited by Hugues Bedouelle