Ben Schuler Research Group




University of Zurich

Protein folding dynamics and intrinsically disordered proteins

Effects of the cellular machinery on protein folding and misfolding mechanisms

We study fundamental aspects that govern protein structure and dynamics in vitro and in vivo by combining the information on molecular distances and dynamics available from single molecule spectroscopy. This approach has allowed us to map intramolecular distance distributions, determine nanosecond dynamics that govern the diffusive search of a protein on its free energy surface, and investigate folding and misfolding dynamics over a wide range of timescales. Single-molecule methods are also ideally suited for probing the structure, dynamics, and functions of intrinsically disordered proteins. Key methods employed are single-molecule Förster resonance energy transfer (FRET) and photoinduced electron transfer (PET).



Many aspects of the physical principles governing protein folding in vitro have been elucidated in the past decades. At the same time, a large number of cellular components involved in protein folding in vivo have been identified. However, our mechanistic understanding of how these cellular components affect the free energy landscape of the folding process has remained very limited, largely due to a lack of suitable methods. We investigate the role of cellular factors on protein folding mechanisms with single molecule fluorescence spectroscopy, in particular the effects of molecular chaperones. A detailed investigation of these processes will be crucial for understanding the fine balance between protein folding and misfolding in the cell, and the large number of diseases associated with protein misfolding and aggregation.

Single molecule spectroscopy

Protein chemistry

A wide range of single-molecule instrumentation is available in the group, including a TIRF microscope and several state-of-the-art confocal instruments with picosecond counting electronics and a large variety of laser sources. Our projects are often based on the development of novel instrumentation and data analysis tools, frequently in close combination with theory and simulations. By taking full advantage of all observables from single-photon counting, both quantitative distance information and conformational dynamics on many timescales become accessible. Examples include nanosecond reconfiguration times from rapid correlation spectroscopy and millisecond to minute kinetics from single molecule detection with microfluidic mixing devices.



A prerequisite for single molecule FRET experiments is the site-specific labeling of proteins with suitable fluorophores. We use modern molecular biology methods, recombinant heterologous expression, and purification with advanced chromatography techniques to generate the proteins of choice. We also develop new methods to improve specificity and versatility of fluorophore incorporation.


University of Zurich